点击上方「蓝字」关注我们
1,Pandas安装
pandas是python的一个第三方库,那么我们下载可以直接终端输入:
pip insatll pandas
2,Series
2.1,Series数据创建
首先导入pandas库,一般都会用到numpy库,所以我们先导入备用
import numpy as npimport pandas as pd
series属于一维数组,那么就类似于python中的list(列表),只不过这个数据是"竖起来"的list,那我们开始利用pandas建立Series!
import numpy as npimport pandas as pdlist1 = pd.Series(['张三','李四','王五','孙六'])print(list1)
可以看到pd.Series后面放的是一个list数据,运行后我们可以看看得到的结果有啥表现:
以上可以看到我们的数据竖了起来,那么旁边这列下标是哪里来的呢?这是pandas自带的index数据,如果我们不特殊标明的话,则是从0开始递增的,接下来我们自定义一下index:
list1 = pd.Series(['张三','李四','王五','孙六'],index=['A','B','C','D'])
可以看下我们得到的结果:
如果我们下标与数据的个数对应不上的话,那么代码运行将会报错,所以没必要的话,我们没必要特地标明下标。如果我们存在空的数据应当如何写入呢?NAN在pandas里面表示的就是空值,我们可以借助numpy库:
list1 = pd.Series(['张三','李四',np.nan,'王五','孙六'])
运行可以得到以下结果:
2.2,Series常用操作
获取下标--Series.index:
list1 = pd.Series(['张三','李四','二狗','王五','孙六'])print(list1.index)>>>RangeIndex(start=0, stop=5, step=1)
可以看到下标从0开始,一个有5个,如果下标是我们定义的则会显示出具体的下标数据。
获取value值:
我们可以通过下标进行数据获取,如果是自定义的下标,那么下标类似于python中字典里的key:
list1 = pd.Series(['张三','李四','二狗','王五','孙六'],['a','b','c','d','e'])print(list1['d'])>>>王五
如果是默认的下标,那么我们需要借助 iloc方法:
list1 = pd.Series(['张三','李四','二狗','王五','孙六'])print(list1.iloc[3])>>>王五
获取数据前几行--head():
print(list1.head(2))
获取Series详细信息--describe():
print(list1.describe())
对数据排序--sort_values():
list1 = pd.Series(['张三','李四','二狗','王五','孙六'])print(list1.sort_values())
Series与字典dict之间的转换:
我们知道Series是由下标和value组成的,那么数据是不是和python中的字典有点相似呢?能不能将其转换为dict?接下来我们来演示:
Series-->dict(to_dict()):
list1 = pd.Series(['张三','李四','二狗','王五','孙六'])print(list1.to_dict())>>>{0: '张三', 1: '李四', 2: '二狗', 3: '王五', 4: '孙六'}
dict-->Series():
dict1 = {'a':'张三','b':'李四','c':'二狗','d':'王五','e':'孙六'}list1 = pd.Series(dict1)print(list1)
注意:
之前有说过如果index与value个数对不上的话会报错,但是如果我们是使用dict字典形式传入的话,那么则不会出现这种报错情况,如果下标重复的话,value也会重复,下标不存在的话,则会自动填充value为Nan!
dict1 = {'a':'张三','b':'李四','c':'二狗','d':'王五','e':'孙六'}bt = ['a','b','c','d','e','f','c']list1 = pd.Series(dict1,index=bt)print(list1)
-END-
今天的内容暂且这么多,下期我们继续!
最后推上一首小编很喜欢的歌,希望大家喜欢!
关注本号,教你更多测试技能
往期推荐
一篇文章了解python常见内置异常报错
python中装饰器是如何实现的,企业中用来做什么呢
如何使用jsonpath与python结合进行接口响应断言
yaml文件解读及接口自动化相结合使用
yaml文件解读及接口自动化相结合使用
Pandas基础介绍及基本数据结构