微信实时给服务器发送gps位置,你知道吗?微信聊天发原图暴露你的位置信息

为了保证清晰度,大家在微信里发图片的时候都喜欢发原图,网络声称如果你在微信里发原图的话,就会暴露你的位置信息,这消息一出刷爆了朋友圈,引起大家的关注和热议,那到底这个说法是真的吗?

记者在采访中了解到,多数市民在朋友圈发送图片还是比较青睐发送原图。那么,对于“当你在微信聊天时,选择发送照片原图,会让接收方可以对你进行精确定位”这个说法,大家怎么看呢?

2040df8b4d4729b0882392d01b2ae13b.png

那到底发原图会不会暴露自己的位置呢?记者到泗洪县公安局网络安全保卫大队,找专业人士进行现场试验。民警首先打开了手机的GPS定位,设置了保存地理位置,随机拍摄一些图片,然后在微信里选择“发原图”的形式,把照片发送出去。网警通过电脑软件对接收的图片进行分析,记者拍到的地理位置很快就显示了出来。

民警告诉记者,当我们打开手机的GPS定位、拍照设置成保存地理位置、发送原图的时候,照片里存储的一些信息都会和照片一起传输给对方。

这样的话,如果不法分子拿到“原图”,可能会对发送者进行定位,进行一些诈骗,带来一些不利。

那我们平时想在朋友圈发送图片时,又该怎么保护自己的隐私呢?

民警提醒:为了保护个人的隐私,我们可以选择关闭位置信息或是不发送照片原图就可以了。

看来,这微信朋友圈发送图片能泄露隐私的消息,远没有我们想象的那么可怕。只要有自我保护意识,不法分子就没有可乘之机。

(责任编辑:纪宝成_SQ04)

在当今计算机视觉领域,深度学习模型在图像分割任务中挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值