java中求已知数列的值_java—求斐波那契数列的第n个值

java求斐波那契数列的第n个值

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 3,n∈ N*)

/**

* 使用递归方法求第n个斐波那契数列的值

*

* @param n 第几个数

* @return 结果

*/

private Integer calNumberByRecursion(Integer n) {

if (n == 1 || n == 2) {

return 1;

}

return calNumberByRecursion(n - 1) + calNumberByRecursion(n - 2);

}

分析: 代码简单,时间复杂度O(2^n),空间复杂度O(n); 非常耗费时间!!!

/**

* 数组 - 使用穷举方法求第n个斐波那契数列的值

*

* @param n 第几个数

* @return 结果

*/

private Integer calNumberByArray(Integer n) {

Integer[] array = new Integer[n];

array[0] = 1;

array[1] = 1;

for (int i = 2; i < n; i++) {

array[i] = array[i - 1] + array[i - 2];

}

log.info("calNumberByArray - 长度为{}的斐波那契数列 : {}", n, StringUtils.join(array, ","));

return array[n - 1];

}

/**

* 集合 - 使用穷举方法求第n个斐波那契数列的值

*

* @param n 第几个数

* @return 结果

*/

private Integer calNumberByList(Integer n) {

ArrayList list = new ArrayList<>(n);

list.add(1);

list.add(1);

for (int i = 0; i < n - 2; i++) {

list.add(list.get(i) + list.get(i + 1));

}

log.info("calNumberByList - 长度为{}的斐波那契数列 : {}", n, JSON.toJSON(list));

return list.get(n - 1);

}

分析: 时间复杂度:O(1),空间复杂度O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值