函数式编程python_Python函数式编程

函数式编程

函数式编程就是一种给抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个 函数,只要输入是正确的,输出就是正确的。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数。

高阶函数

变量可以指向函数

即:

>>> abs(-10)

10

>>> abs

>>> x = abs(-10)

>>> x

10

>>> f = abs

>>> f

#即:

>>> f(-10)

10

函数名也是变量

即:

>>> abs = 10

>>> abs(-10)

Traceback (most recent call last):

File "", line 1, in

TypeError: 'int' object is not callable

把abs指向10后,就无法通过abs(-10)调用该函数了,因为abs这个变量已经不指向求绝对值函数而是指向一个整数10,要恢复abs函数,请重启Python交互环境

传入函数

既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数称为高阶函数。一个简单的高阶函数

def add(x, y ,f)

return f(x) + f(y)

map/reduce

python内建了map()和reduce()函数

map()函数接收脸啊哥哥参数,一个是函数,一个是Iterable,map将传入的函数一次作用到序列的每个元素,并把结果作废新的Iterator返回。即:

def f(x):

return x ** 2

r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])

print(list(r)) #[1, 4, 9, 16, 25, 36, 49, 64, 81]

map传入的第一个参数是f,即函数对象本身,由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数把整个序列都计算出来并返回一个list

map()作为高阶函数,事实上它把运算规则抽象化,作用在Iterable的每一个元素并生成一个新的Iterator

reduce()``函数,把一个函数作用在一个序列上,这个函数必须接收两个参数,reduce`把结果继续和序列的洗一个元素做累积计算,其效果是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2,), x3), x4)

#对一个序列求和

>>> from functools import reduce

>>> def add(x, y)

return x + y

>>> reduce(add, [1, 3, 5, 7, 9])

25

filter

filter()函数用于过滤序列和map()相似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把纯如的函数依次作用于每个元素,然后根据返回值的True和False决定保留还是丢弃该元素,例:保留奇数

def is_odd(n):

return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))

# 结果集[1,5, 9, 15]

可看出,上述举例中is_odd()可以看作是一个筛选函数。使用filter()函数,关键在于正确实现一个筛选函数。

计算素数

计算素数的一个方法是埃拉托色尼筛选法,理解非常简单:

列出从2开始的所有自然数,构造一个序列:

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,......

取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉

3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,......

取序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉

4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,......

取序列的第一个数5,它一定是素数,然后用5把序列的5的倍数筛掉

6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,......

不断的筛选下去,就可以得到所有的素数。即:

构造一个从3开始的奇数序列,下列是一个从3开始的奇数序列生成器,并且是一个无限序列3-∞

def _iter():

n = 1

while True:

n = n + 2

yield n

定义一个筛选函数

def _not_divisible(n):

return lambda x : x % n > 0 #序列x中的所有元素% n > 0的保留,% n == 0的不保留

最后,定义一个生成器,不断返回下一个素数

def primes():

yield 2

it = _iter() # 初始化序列

while True:

n = next(it) # 返回序列的第一个数

yield n

it = filter(_not_divisible(n), it) # 构造一个新的序列

primes是一个无限序列,所以调用时,设置一个退出循环的条件

for n in primes():

if n < 100:

print(n) #打印从2-100的所有素数值,即上述`primes()`函数中`yield`返回的n

else:

break

sorted排序算法

内置的排序算法函数sorted(),可以对list进行排序。sorted()函数还可以接收一个key函数来实现自定义的排序。即:

L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]

# 按学生姓名进行排序规则

def by_name_sort(t):

return t[0]

# 按照学生成绩从高到低排序规则

def by_score_sort(t):

return -t[1]

# 运行结果:

L2 = sorted(L, key=by_name_sort)

print(L2)

# 结果:[('Adam', 92), ('Bart', 66), ('Bob', 75), ('Lisa', 88)]

L3 = sorted(L, key=by_score_sort)

print(L3)

# 结果:[('Adam', 92), ('Lisa', 88), ('Bob', 75), ('Bart', 66)]

返回函数

将函数作为结果值返回:

def lazy_sum(*args) :

def sum():

ax = 0

for n in args:

ax = ax + n

return ax

return sum # 返回sum函数,sum函数内暂不计算求和

f = lazy_sum(1, 3, 5, 7, 9)

print(f)

# TODO:打印:.sum at 0x0000014B7A247A60>

print(f()) # 运行f函数,即lazy_sum(*args)返回的sum()函数

# 打印结果:25

函数lazy_sum(*args)中又定义了函数sum,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,被称为“闭包”的程序拥有极大的威力。

注:每次调用时,都会返回一个新的函数,即使传入相同的参数

>>> f1 = lazy_sum(1, 3, 5, 7, 9)

>>> f2 = lazy_sum(1, 3, 5, 7, 9)

>>> f1 == f2

False

>>> f1() == f2()

True

闭包

返回的函数并没有立刻执行,而是直到调用了f()才执行

def count():

fs = []

for i in range(1,4):

def f():

return i * i

fs.append(f)

return fs

f1, f2, f3 = count()

# 调用

print(f1) # 9

print(f2) # 9

print(f3) # 9

全部都是9,原因在于返回的函数引用了变量i,但是并非立刻执行,等到3个函数都返回时,引用的变量i已经变成了3,因那次结果为9。

返回闭包时牢记:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

若一定要引用循环变量,在创建一个函数,用函数的参数绑定循环变量当前的值。

def count():

def f(j):

def g():

return j*j

return g

fs = []

for i in range(1, 4):

fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()

return fs

f1, f2, f3 = count()

# 调用

print(f1) # 1

print(f2) # 4

print(f3) # 9

缺点是代码较长,可利用lambda函数缩短代码。

匿名函数lambda

lambda x: x * x实际上是:

def f(x):

return x * x

lambda是匿名函数的关键字,冒号前面的x表示函数参数。

匿名函数有个限制,只能有一个表达式,不用写return,返回值就是该表达式的结果。也可以将匿名函数赋值给一个变量,利用变量来调用该函数

装饰器

函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。函数对象有一个__name__属性,可以拿到函数的没名字:

def now():

print('2020-06-05')

f = now

print(now.__name__) # 'now'

现增强now()函数的功能,如,在函数调用前后自动打印日志,但是不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,被称为“装饰器”(Decorator)。

decorator是一个返回函数的高阶函数,定义一个能打印日志的decorator

def log(func):

def wrapper(*args, **kw):

print('call %s():' % func.__name__)

return func(*args, **kw)

return wrapper

函数log是一个decorator,所以接受一个函数作为参数,并返回一个函数。借助@语法,把dedcorator置于函数的定义处:

@log

def now():

print('2020-06-05')

当调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

>>> now()

calll now()

2020-06-05

将@log放在now()函数的定义处,相当于执行了语句now = log(now)

由于log()是一个decorator,返回一个函数,所以,原来的now()函数任然存在,只是同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数课可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再调用原始函数。

若decorator本身需要传入参数,就需要编写一个返回decorator的高阶函数,写出来会更加复杂,如:自定义log的文本:

def log(text):

def decorator(func):

def wrapper(*args, **kw):

print('%s %s():' % (text, func.__name__))

return func(*args, **kw)

return wrapper

return decorator

使用后:

@log('execute')

def now():

print('2020-06-05')

now()

# execute now():

# 2020-06-05

3层嵌套的效果是这样的,now = log('execute')(now)。首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

函数也是对象,它有__name__等属性,经过哦decorator装饰之后,'__name__'属性从原来的函数名变成了'wrapper'。因为返回的那个wrapper()函数名字就是wrapper,所以,幼把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行会出错。

python中内置了funtools.wraps,就是干这个事情的:

import functools

def log(func):

@functools.wraps(func)

def wrapper(*args, **kw):

print('call %s()' % func.__name__)

return func(*args, **kw)

return wrapper

import functools是导入functools模块。

偏函数

偏函数,即functools模块中的一个功能函数partial,functools.partial的作用就是,把一个函数的某些参数给固定住(即默认值),返回一个新的函数,调用这个新函数会更加简单。

当函数的参数太多,需要简化时,使用functools.partial创建一个新的函数,新函数可以固定原函数部分参数,从而调用时更简单。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值