python处理心电图_【技术博客】Python玩转信号处理与机器学习入门

本文介绍了如何使用Python进行信号处理,包括FFT、PSD和自相关分析,并通过一个实例展示了如何利用这些技术从手机振动信号中识别人体动作,实现了89%的分类准确率。
摘要由CSDN通过智能技术生成

作者:王镇

面对毫无规律的随机信号,看着杂乱无章的振动波形,你是否也像曾经的我一样一头雾水,不知从何处下手。莫慌,接下来小编就带你入门怎样用python处理这些看似毫无卵用实则蕴藏巨大信息的随机信号。我们日常生活中所见的心电图,声波图都是信号在时域上的一种表现,但它们无法呈现出信号在频域上的信息。因此,本文将主要介绍信号从时域到频域上的一些变换,常见的有FFT(快速傅里叶变换),PSD(功率谱密度),auto-correlation(自相关分析)。最后小编将带你完成一个实例,通过手机采集的振动信号识别人体的动作。

一、介绍

本部分将介绍FFT,PSD,auto-correlation的基本概念以及python代码实现。

1.1 混合信号

图1 信号在时域上的表现

图2 信号在频域上的表现

上图展示了混合信号在时域上的表现形式,图(a)为一频率为1Hz,振幅为2的正弦波信号,图(b)为一频率为5Hz,振幅为1的正弦波信号,图(c)为(a)、(b)两信号的叠加结果。

1.2 FFT

FFT英文全称Fast Fourier Transformation,即快速傅里叶变换,它可以轻松地分析出混合信号中的各频率组成成分。对上述中的混合信号做FFT变换,结果如图2(a),可以明显地看到混合信号包含频率分别为1Hz和5Hz的成分。FFT变换的代码如下:

from scipy.fftpack import fft

def get

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值