熵值法 java_权重系数确定问题

根据各个指标获得综合指标时,由于各个指标对综合指标的贡献度不同,相应权重也应不同,对综合指标贡献大的指标更重要,应该分配更大的权重。如何确定各个指标的权重,这里介绍两种方法:熵值法和pca确定权重。也可用于特征工程中确定特征权重。

一、熵值法

1、熵的概念

信息论中,熵是对随机变量不确定性的度量。熵值越小,无序程度越小,不确定性越小,信息量越大;熵值越大,无序程度越大,不确定性越大,信息量越小。可用熵值计算特征的离散程度,离散程度大的特征对综合值影响更大。

熵值大,信息量小,权重应该小;熵值小,信息量大,权重应该大。

熵的计算公式

3aef4f1a4624e488bddc9ab4ae0080c2.png

2、熵值法确定权重

指标1

指标2

……

指标m

...

...

...

...

确定指标1到指标m的权重

指标值不同取值的出现次数相差大,熵小,信息量大,权重应大;指标值不同取值的出现次数相差小,熵大,信息量小,权重应小。

当m个指标值完全相同时,熵最大,可移除该指标。

熵值法确定权重的步骤:

1、归一化

对指标值进行归一化,归一化时,应考虑指标值的影响

当指标值越大越好时,可使用公式

x=(x-xmin)/(xmax-xmin)

当指标值越小越好时,可使用公式

x=(xmax-x)/(xmax-xmin)

2、定义熵

m个指标,n个被评价对象

第i个指标

37517d3fef3b47c32bc1befe07c08b7b.png

3、定义熵权

5eb73442ad9e6849e4166acb83980f91.png

二、pca确定权重

pca是一种无监督的降维方法,pca通过线性变换将原来可能相关的n个向量变换成线性无关的k维向量。用pca确定权重系数需要知道三个条件:

指标在各主成分线性组合中的系数

主成分的方差贡献率

指标权重的归一化

ex:n个主成分,m个指标

w表示各主成分的系数,wij表示第一个主成分第j个指标的系数,fi表示第一个主成分的方差贡献率

则第q个指标的权重为

585a92135a15ae1a001d2dc38e180b43.png

归一化

63b150cfbf1cd66ba848aa4367eebdb3.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值