作者 | 程序员小吴
来源 | 五分钟学算法(ID: CXYxiaowu)
1. 归并排序
1.1 算法步骤
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤 3 直到某一指针达到序列尾;
将另一序列剩下的所有元素直接复制到合并序列尾。
1.2 动画视频演示
播放
1.3 参考代码
def mergeSort(arr):import mathif(len(arr)<2):return arrmiddle = math.floor(len(arr)/2)left,right= arr[0:middle], arr[middle:]return merge(mergeSort(left), mergeSort(right))def merge(left,right):result = []whileleftandright:ifleft[0] < =right[0]:result.append(left.pop(0));else:result.append(right.pop(0));whileleft:result.append(left.pop(0));whileright:result.append(right.pop(0));return result
2. 快速排序
2.1 算法步骤
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2.2 动画视频演示
播放
2.3 参考代码
def quickSort(arr,left=None,right=None):left=0ifnotisinstance(left,(int, float))elseleftright=len(arr)-1ifnotisinstance(right,(int, float))elserightifleft
3. 堆排序
3.1 算法步骤创建一个堆 H[0……n-1];
把堆首(最大值)和堆尾互换;
把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
重复步骤 2,直到堆的尺寸为 1。
3.2 动画视频演示
播放
3.3 参考代码
def buildMaxHeap(arr):importmathforiinrange(math.floor(len(arr)/2),-1,-1):heapify(arr,i)def heapify(arr, i):left =2*i+1right =2*i+2largest = iifleft < arrLenandarr[left] > arr[largest]:largest = leftifright < arrLenandarr[right] > arr[largest]:largest = rightiflargest != i:swap(arr, i, largest)heapify(arr, largest)def swap(arr, i, j):arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):globalarrLenarrLen = len(arr)buildMaxHeap(arr)foriinrange(len(arr)-1,0,-1):swap(arr,0,i)arrLen -=1heapify(arr,0)returnarr