solve函数c语言_Mathemetica使用Solve解方程组输出{}是怎么回事儿?

博客内容探讨了在使用Mathematica的Solve函数解决一个涉及浮标、钢管、钢桶和锚链系统的多变量方程组时遇到的问题。尽管方程组详细且复杂,但Solve函数的输出为{},意味着无法找到解。作者寻求解释和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(呜呜呜,代码不长这个样子啊,因为下标和希腊字母极多,复制过来就变得很繁杂,知乎还在维护,不能放图,啊啊啊啊啊)

大佬们可以往自己的mathamiticas里面复制一下看

Solve[{

(*以下是浮标部分常量及方程*)

Subscript[R, f] == 2,

\[Rho] == 1.025*10^3,

g == 9.8,

Subscript[h, f] == 2,

Subscript[m, f] == 1000,

(*方程*)

0.625*v^2*Subscript[R, f]*h -

Subscript[F, 1]*Sin[Subscript[\[Theta], 1]] == 0,

\[Rho]*g*Pi (Subscript[h, f] - h)*Subscript[R, f]^2/4 ==

Subscript[m, f] + Subscript[F, 1]*Cos[Subscript[\[Theta], 1]],

(*以下是钢管部分常量及方程*)

Subscript[l, g] == 1,

Subscript[R, g] == 0.05,

Subscript[m, g] == 10,

(*方程*)

Subscript[F, 2]*Sin[Subscript[\[Theta], 2]] -

Subscript[F, 1]*Sin[Subscript[\[Theta], 1]] == 0,

Subscript[F, 3]*Sin[Subscript[\[Theta], 3]] -

Subscript[F, 2]*Sin[Subscript[\[Theta], 2]] == 0,

Subscript[F, 4]*Sin[Subscript[\[Theta], 4]] -

Subscript[F, 3]*Sin[Subscript[\[Theta], 3]] == 0,

Subscript[F, 5]*Sin[Subscript[\[Theta], 5]] -

Subscript[F, 4]*Sin[Subscript[\[Theta], 4]] == 0,

\[Rho]*g*Pi*Subscript[l, g]*Subscript[R, g]^2/4 +

Subscript[F, 1]*Cos[Subscript[\[Theta], 1]] ==

Subscript[m, g]*g + Subscript[F, 2]*Cos[Subscript[\[Theta], 2]] ==

0,

\[Rho]*g*Pi*Subscript[l, g]*Subscript[R, g]^2/4 +

Subscript[F, 2]*Cos[Subscript[\[Theta], 2]] ==

Subscript[m, g]*g + Subscript[F, 3]*Cos[Subscript[\[Theta], 3]] ==

0,

\[Rho]*g*Pi*Subscript[l, g]*Subscript[R, g]^2/4 +

Subscript[F, 3]*Cos[Subscript[\[Theta], 3]] ==

Subscript[m, g]*g + Subscript[F, 4]*Cos[Subscript[\[Theta], 4]] ==

0,

\[Rho]*g*Pi*Subscript[l, g]*Subscript[R, g]^2/4 +

Subscript[F, 4]*Cos[Subscript[\[Theta], 4]] ==

Subscript[m, g]*g + Subscript[F, 5]*Cos[Subscript[\[Theta], 5]] ==

0,

Subscript[F, 1]*Subscript[l, g]/2*

Sin[Subscript[\[Alpha], 1] - Subscript[\[Theta], 1]] -

Subscript[F, 2]*Subscript[l, g]/2*

Sin[Subscript[\[Theta], 2] - Subscript[\[Alpha], 1]] == 0,

Subscript[F, 2]*Subscript[l, g]/2*

Sin[Subscript[\[Alpha], 2] - Subscript[\[Theta], 2]] -

Subscript[F, 3]*Subscript[l, g]/2*

Sin[Subscript[\[Theta], 3] - Subscript[\[Alpha], 2]] == 0,

Subscript[F, 3]*Subscript[l, g]/2*

Sin[Subscript[\[Alpha], 3] - Subscript[\[Theta], 3]] -

Subscript[F, 4]*Subscript[l, g]/2*

Sin[Subscript[\[Theta], 4] - Subscript[\[Alpha], 3]] == 0,

Subscript[F, 4]*Subscript[l, g]/2*

Sin[Subscript[\[Alpha], 4] - Subscript[\[Theta], 4]] -

Subscript[F, 5]*Subscript[l, g]/2*

Sin[Subscript[\[Theta], 5] - Subscript[\[Alpha], 4]] == 0,

(*以下是钢桶及重物球部分常量及方程*)

Subscript[l, t] == 1,

Subscript[R, t] == 0.3,

Subscript[\[Rho], q] == 7.65*10^3,

Subscript[m, t] == 100,

Subscript[m, q] == 1200,

(*方程*)

Subscript[F, 5]*Sin[Subscript[\[Theta], 5]] -

Subscript[F, m]*Sin[Subscript[\[Theta], m]] == 0,

Subscript[F, m]*Cos[Subscript[\[Theta], m]] + Subscript[m, t]*g +

Subscript[m, q]*g - \[Rho]*g*

Subscript[m, q]/Subscript[\[Rho], q] -

Subscript[F, 5]*Cos[Subscript[\[Theta], 5]] - \[Rho]*g*Pi*

Subscript[l, t]*Subscript[R, t]^2/4 == 0,

Subscript[F, 5]*Subscript[l, t]/2*

Sin[Subscript[\[Alpha], 5] - Subscript[\[Theta], 5]] -

Subscript[F, m]*Subscript[l, t]/2*

Sin[Subscript[\[Theta], m] - Subscript[\[Alpha], 5]] == 0,

(*以下是锚链部分常量及方程*)

Subscript[m, m] == 22.05*7,

Subscript[\[Rho], m] == 7.82*10^3,

s == 22.05,

Subscript[\[Theta], 0] == Pi/2,

(*方程*)

Subscript[y, m] -

c/a*(1/(Cos[ArcTan[(a*s + b)/c]]) + 1/(Cos[ArcTan[b/c]])) == 0,

Subscript[F, m]*Sin[Subscript[\[Theta], m]] -

Subscript[F, 0]*Sin[Subscript[\[Theta], 0]] == 0,

Subscript[F, m]*Cos[Subscript[\[Theta], m]] -

Subscript[m, m]*g*s + \[Rho]*g*A*s -

Subscript[F, 0]*Cos[Subscript[\[Theta], 0]] == 0,

a == Subscript[m, m]*g - \[Rho]*g*A,

b == Subscript[F, 0]*Cos[Subscript[\[Theta], 0]],

c == Subscript[F, 0]*Sin[Subscript[\[Theta], 0]],

Subscript[m, m] == Subscript[\[Rho], m]*s*A,

(*以下是计算高度部分常量及方程*)

H == 18,

(*方程*)

Subscript[h, f] - h + Subscript[l, g]*Cos[Subscript[\[Alpha], 1]] +

Subscript[l, g]*Cos[Subscript[\[Alpha], 2]] +

Subscript[l, g]*Cos[Subscript[\[Alpha], 3]] +

Subscript[l, g]*Cos[Subscript[\[Alpha], 4]] + Subscript[l,

t*Cos[Subscript[\[Alpha], 5]]] + Subscript[y, m] == H},

{Subscript[F, 1], Subscript[\[Theta], 1], h, v, Subscript[F, 2],

Subscript[F, 3], Subscript[F, 4], Subscript[F, 5],

Subscript[\[Theta], 2], Subscript[\[Theta], 3], Subscript[\[Theta],

4], Subscript[\[Theta], 5], Subscript[\[Alpha], 1],

Subscript[\[Alpha], 2], Subscript[\[Alpha], 3], Subscript[\[Alpha],

4], Subscript[\[Alpha], 5], Subscript[F, m], Subscript[\[Theta], m],

a, b, c, Subscript[F, 0], A, Subscript[y, m]}]

out[8] ={}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值