nnU-Net: 破除魔咒,一个成功的医学图象分割技术

nnU-Net是一个自动适应医学图像分割数据集的框架,通过自动化流程调整预处理、网络结构和训练参数。它在多个高规格分割比赛中取得最优表现,无需人工调参,仅依赖U-Net结构和动态设计选择。nnU-Net的自动适应能力挑战了传统手动调整的方法,为医学图像分割提供了强大的基准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nnU-Net: Breaking the Spell on Successful Medical Image Segmentation

nnU-Net: 破除魔咒,一个成功的医学图象分割技术

Author:Fabian Isensee et al.

Abstract.
由于数据集的多样性,语义分割现在是医学图像领域一个非常热门的子环节,大量的新方法每年都会出现。但是,这个野蛮生长的领域,正在日益变得令人捉摸不透。同时,很多新提出的办法不能推广在超出所在实验的范围之外,因此妨碍了在新数据集上继续开发相应的分割算法。现在,我们提出了nnU-Net(‘no new-Net’), 这是一个能够自动适应新数据集的框架。当这一过程现在还完全由人为驱动,我们基于给定的数据集,做出了历史上第一次的自动化适用程序,比如预训练(preprocessing),确定的patch size,batch size和推理设置(inference settings)。值得一提的是,nnU-Net抛弃了结构种零零碎碎的东西,而只依赖于简单U-Net结构,并将其镶嵌在一个鲁棒的训练结构之中。突破了常规,nnU-Net在6个高规格的分割比赛中取得了目前最好的表现。
Source code is available at https://github.com/MIC-DKFZ/nnunet.

Keywords: Medical Image Segmentation · U-Net · Generalization
关键词:医学图象分割 · U-Net · 泛化

1 Introduction
语义分割现在是个热门话题,在医学图象领域70%的国际比赛都是关于这个。引起人们长期兴趣的原因很显然是医学图像领域中遇到的数据集的多样性和独特性。当考虑图像的大小、尺寸、分辨率、体素强度等等,数据集之间的差别常常变得非常之大。 传统的图像标签常常十分地失衡,而且可以是非常模棱两可的,而且医学专家标注的结果,在不同的数据集上,也常常是千差万别的。不仅如此,某些数据集在图像几何和形状等属性上非常不同,切片不对齐和各向异性的问题也非常地严重。总结起来就是,在医学图像上,想泛化一些具有普适性方法是非常地困难。 想要做出新的设计和调整新的设计是非常地难的,而且很多的设计的决定之间的依赖关系非常低复杂。分割相关的论文被发表,很多相关的设计的论文其实根本就是噪音(noise)。这里提供一些常见的很优秀的案例:跳跃连接skip connection的很多变种,首先被引入到U-Net中,其中包括残差连接residual connections。 注意力机制,额外的损失层。特征图重校等。这些修改彼此之间差别很大,但是大多都是聚焦在结构上。一方面是大量的论文被发表,另一方面是大量的千差万别的数据集,越来越难以确定到底哪些设计才是真正适用于所有数据集的好办法。根据我们的经验,很多设计不但没有改善甚至有恶化的作用。 医疗图像领域一个很关键的问题是,对一个旧问题,迁移到新问题的时候,这一过程常常是人为驱动的。大量的论文只会关注于结构的改善,而对超参数则常常略微提及,超参数的不足常由结构的改良所抵消。因为强烈的特定问题的依赖性,和超参数空间里的局部最优使得优化一个普适的办法十分地困难。这也不是任何一个人的问题,这是这个领域的问题。但是这个现状真的是让人很抓狂,特别是医学领域这个领域,数据集之间的异化十分严重。

这篇论文就是在解决这个问题上,向这个方向迈出了第一步:我们提出了一个叫做no-new-Net(nnU-Net)的分割结构,包括一套能够自动适应新数据集的办法。根据对数据集的自动分析,nnU-Net自动设计网络和执行训练流程。在标准原始的U-Net网络结构下,我们认定一套系统地,精心挑选的超参数会产生极具竞争力的表现。实际上,没有任何人工调参操作,这个办法取得了state of the art的表现,在很多高规格医学分割比赛上都是如此。

2 Method

一个分割算法可以表示为function fθ(x) = ˆy ,x表示图片,ˆy表示对应的分割结果,θ是训练和应用方法对应的超参数。θ 的维度可以灰常之高,囊括了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值