2020 最新 深度学习 图像分割技术 串烧


由于这两年深度学习图像分割技术出现大量有趣和前瞻的分割技术,现在这里做一篇回顾性的总结,以提升学习效率。涉及语义分割、实例分割等。

具体技术包罗:

1.卷积网络家族
2.编解码器家族
3.多尺度金字塔结构
4.R-CNN模型做实例分割
5.膨胀卷积和Deeplab系列
6.RNN
7.注意力机制
8.对抗网络GAN

神经网络分类

CNNs、
在这里插入图片描述
RNN (LSTM)
在这里插入图片描述
编解码器
Encoder-Decoder 和 Auto-Encoder模型
在这里插入图片描述
对抗网络
在这里插入图片描述
迁移学习

模型

FCN
在这里插入图片描述
在这里插入图片描述

Skip-connection

ParseNet
在这里插入图片描述
在这里插入图片描述

Encoder Decoder
在这里插入图片描述
SegNet
在这里插入图片描述
在这里插入图片描述
HRNet
在这里插入图片描述
在这里插入图片描述
U-Net
在这里插入图片描述
在这里插入图片描述
V-Net
在这里插入图片描述

Multi-layer perceptron (MLPs)
在这里插入图片描述
在这里插入图片描述
PSPN
在这里插入图片描述
在这里插入图片描述
R-CNN based models for Instance Segmentation
在这里插入图片描述
Mask R-CNN
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

PAN
在这里插入图片描述
在这里插入图片描述

MaskLab
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Dilated Convolutional Models and Deeplab Family
在这里插入图片描述

在这里插入图片描述
DeepLab
在这里插入图片描述
DeepLab v3+
在这里插入图片描述
在这里插入图片描述

Attention-Based Models
Attention-based semantic segmentation model
在这里插入图片描述
在这里插入图片描述
The reverse attention network for segmentation
在这里插入图片描述
在这里插入图片描述
The dual attention netowrk for semantic segmentation
在这里插入图片描述
在这里插入图片描述
Generative Models and Adversarial Training
在这里插入图片描述
在这里插入图片描述
A semi-supervised segmentation framework
在这里插入图片描述
在这里插入图片描述
Adversarial network with Multi-scale L1 loss
在这里插入图片描述
在这里插入图片描述
EncNet
RefineNet
Seednet
Feedforward-Net
BoxSup
Graph-convolutional net
Wide ResNet
Exfuse
DIS dual image segmentation
FoveaNet
Ladder DenseNet
BiSeNet
SPGNet
Gated shape CNNs
AC-Net
DSSPN
SGR
SAC
UperNet

主流公开数据集

2D

  1. PASCAL Visual Object Classed (VOC)
  2. PASCAL context
  3. Microsoft Common Objects in Context (MS COCO)
  4. Cityscapes
  5. ADE20K / MIT Scene Parsing (SceneParse150)
  6. SiftFlow
  7. Stanford background
  8. Berkeley Segmentation Dataset (BSD)
  9. Youtube-Ojects
  10. KITTI

2.5D
11. NYU-D
12. SUN-3D
13. SUN RGB-D
14. UW RGB-D Object Dataset
15. ScanNet

3D
16. Stanford 2D-3D
17. ShapeNet Core
18. Sydney Urban Objects Dataset

主流评价指标

Pixel accuracy
在这里插入图片描述
Mean Pixel Accuracy (MPA)
在这里插入图片描述
IOU / Jaccard Index /Mean-IOU
在这里插入图片描述
Precision / Recall / F1
在这里插入图片描述
Dice
在这里插入图片描述

模型得分汇总

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值