笔者把自己这篇原本发布在github page上的文章迁移到了这里,原github page网址:https://iceflameworm.github.io/2019/12/02/pdfplumber-table-extraction-1/
pdfplumber是一款完全用python开发的pdf解析库,对于线框完全的表格,pdfminer能给出比较好的抽取效果,但是对于线框不完全(包含无线框)的表格,其效果就差了不少。因为在实际项目所需处理的pdf文档中,线框完全及不完全的表格都比较多,所以为了能够理解pdfplumber实现表格抽取的原理和方法,找到改善、提升表格抽取效果的方法,这里对pdfplubmer的代码逻辑进行了梳理。由于所涉及的内容比较多,所以计划分为三部分进行整理:1. 介绍pdfplumber及其表格抽取流程, 2. 梳理pdfplumber表格线检测逻辑, 3. 梳理pdfplumber表格生成逻辑。本文是第一部分。
- 背景介绍
- pdfplumber简介
- pdfplumber抽取表格的基本流程
背景介绍
最近在做一个表格信息抽取的项目,该项目需要从pdf文件中找到的目标表格,并把目标表格中需要的行和列给抽取出来。由于项目中pdf扫描件占比相对较少(不太到10%吧),所以目前主要把精力花在可编辑pdf文件的表格抽取上。
即便是可编辑的pdf文件,从中抽取表格也不是一件容易的事情,概括起来,难在以下几点:
- 与其说pdf是一种数据格式,不如说它是一组打印指令的集合,因为pdf文件保存的只是一条条打印指令,这些指令告诉pdf阅读器或打印机该在屏幕或者纸张的什么位置显示什么样的符号。与docx和html等格式的文件不同(docx和html通过标签的方式组织不同的逻辑结构,比如<table>, <w:tbl>, <p>, <w:p>等),pdf文件不包含任何逻辑结构的信息,比如段落、句子、单词、表格等等。在pdf文档中,即便在阅读器中能看到
table-like
的东西,但是却无法直接有效地把这些视觉上table-like
的东西所对应的数据给抽取出来。 - 除了不会保存逻辑结构信息之外,pdf往往也不会保存空格、制表符、回车等不可见字符,所以在pdf中无法像在docx中一样,通过制表符来定位不是用线框表示的表格。
为了从pdf中比较好的抽取表格,作者调研、尝试了许多开源的框架(不限于python开发的框架),包括微软开源的深度学习表格检测与识别模型TableBank。尝试了一圈下来,在基于python的框架中,pdfplumber和camelot的效果相对较好。对于线框完全的表格,二者都能给出比较好的抽取效果,但是对于线框不完全(包含无线框)的表格,二者的效果就差了不少。
因为在项目所需处理的pdf文档中,线框完全及不完全的表格都比较多,所以为了能够理解pdfplumber实现表格抽取的原理和方法,找到改善、提升表格抽取的方法,作者在这里对pdfplubmer的代码逻辑进行了梳理。由于所涉及的内容比较多,所以计划分为三部分进行整理,分别是:
- pdfplumber是怎么做表格抽取的(一):介绍pdfplumber及其表格抽取流程
- pdfplumber是怎么做表格抽取的(二):梳理pdfplumber表格线检测逻辑
- pdfplumber是怎么做表格抽取的(三):梳理pdfplumber表格生成逻辑
本文是第一部分。
pdfplumber简介
pdfplumber是一款基于pdfminer,完全由python开发的pdf文档解析库,不仅可以获取每个字符、矩形框、线等对象的具体信息,而且还可以抽取文本和表格。目前pdfplumber仅支持可编辑的pdf文档。
虽然pdfminer也可以对可编辑的pdf文档进行解析,但是比较而言,pdfplumber有以下优势:
- 二者都可以获取到每个字符、矩形框、线等对象的具体信息,但是pdfplumber在pdfminer的基础上进行了封装和处理,使得到的对象更易于使用,对用户更友好。
- 二者都能对文本解析,但是pdfminer输出的文本在布局上可能与原文差别比较大,但是pdfplumber抽取出的文本与原文可以有更高的一致性。
- pdfplumber实现了表格抽取逻辑,基于最基本的字符、线框等对象的位置信息,定位、识别pdf文档中的表格。
pdfplumber抽取表格的基本流程
pdfplumber把表格抽取的功能封装在TableFinder
这个类中,在其构造函数__init__
中,清晰的定义了表格抽取的基本流程。下面截取了TableFinder
类__init__
函数部分的代码:
class TableFinder(object):
"""
Given a PDF page, find plausible table structures.
Largely borrowed from Anssi Nurminen's master's thesis: http://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/21520/Nurminen.pdf?sequence=3
... and inspired by Tabula: https://github.com/tabulapdf/tabula-extractor/issues/16
"""
def __init__(self, page, settings={}):
for k in settings.keys():
if k not in DEFAULT_TABLE_SETTINGS:
raise ValueError("Unrecognized table setting: '{0}'".format(
k
))
self.page = page
self.settings = dict(DEFAULT_TABLE_SETTINGS)
self.settings.update(settings)
for var, fallback in [
("text_x_tolerance", "text_tolerance"),
("text_y_tolerance", "text_tolerance"),
("intersection_x_tolerance", "intersection_tolerance"),
("intersection_y_tolerance", "intersection_tolerance"),
]:
if self.settings[var] == None:
self.settings.update({
var: self.settings[fallback]
})
self.edges = self.get_edges()
self.intersections = edges_to_intersections(
self.edges,
self.settings["intersection_x_tolerance"],
self.settings["intersection_y_tolerance"],
)
self.cells = intersections_to_cells(
self.intersections
)
self.tables = [ Table(self.page, t)
for t in cells_to_tables(self.cells) ]
pdfplumber抽取表格主要包含以下几步:
- 因为表格以及单元格都是存在边界的(由可见或不可见的线表示),所以第一步,pdfplumber是找到可见的或猜测出不可见的候选表格线。
- 因为表格以及单元格基本上都是定义在一块举行区域内,所以第二步,pdfplumber是根据候选的表格线确定它们的交点。
- 根据得到的交点,找到它们围成的最小的单元格。
- 把连通的单元格整合到一起,生成一个检测出的表格对象。
好了,这部分就初步写到这里吧 ^_^