这部分是利用pytorch 进行实战,利用迁移vgg16、resnet50 来实现多模型融合,实现猫狗的分类
代码基于python3.7, pytorch 1.0,cuda 10.0 .
PyTorch之多模型融合实战
基于PyTorch实现一个多模型的融合,使用的是多模型融合方法中的结果加权平均,其思路是首先构建两个卷积神经网络模型,然后使用我们的训练数据集分别对这两个模型进行训练和对参数进行优化,使用优化后的模型对验证集进行预测,并将各模型的预测结果进行加权平均以作为最后的输出结果,通过对输出结果和真实结果的对比,来完成对融合模型准确率的计算。-------来自《深度学习之PyTorch实战计算机视觉》
import torch
import torchvision
import os
import time
import matplotlib.pyplot as plt
from torchvision import datasets,models,transforms
from torch.autograd import Variable
%matplotlib inline
# 读取数据集
data_dir = 'DogsVSCats'
# 数据预处理
data_transform = {
x: transforms.Compose([transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(mean = [0.5,0.5,0.5],std = [0.5,0.05,0.5])])for x in ['train','valid']}
# 读取数据集
image_datasets = {
x: datasets.ImageFolder(root = os.path.join(data_dir,x),transform = data_transform[x])for x in ['train','valid']}
# 装载数据集
dataloader = {
x: torch.utils.data.DataLoader(dataset = image_datasets[x],
batch_size = 16,
shuffle = True)for x in ['train','valid']}
# 数据预览,注意到由于上面图片的预处理中,图片进行了normaliza,因此不是显示原图
X_example, Y_example = next(iter(dataloader['train']))
print(u'X_example个数{}'.format(len(X_example)))
print(u'Y_example个数{}'.format(len(Y_example)))
index_classes = image_datasets['train'].class_to_idx # 显示类别对应的独热编码
print(index_classes)
example_classes = image_datasets['train'].classes # 将原始图像的类别保存起来
print(example_classes)
img = torchvision.utils.make_grid(X_example)
img = img.numpy().transpose([1,2,0])
print([example_classes[i] for i in Y_example])
plt.imshow(img