《深度学习之PyTorch实战计算机视觉》学习笔记(10)

本文是《深度学习之PyTorch实战计算机视觉》的学习笔记,介绍如何利用PyTorch结合vgg16和resnet50进行多模型融合,以提高猫狗分类的准确性。通过4个epoch的训练,模型逐步优化,最终验证集上融合模型的准确率达到96%。
摘要由CSDN通过智能技术生成

这部分是利用pytorch 进行实战,利用迁移vgg16、resnet50 来实现多模型融合,实现猫狗的分类
代码基于python3.7, pytorch 1.0,cuda 10.0 .

PyTorch之多模型融合实战

基于PyTorch实现一个多模型的融合,使用的是多模型融合方法中的结果加权平均,其思路是首先构建两个卷积神经网络模型,然后使用我们的训练数据集分别对这两个模型进行训练和对参数进行优化,使用优化后的模型对验证集进行预测,并将各模型的预测结果进行加权平均以作为最后的输出结果,通过对输出结果和真实结果的对比,来完成对融合模型准确率的计算。-------来自《深度学习之PyTorch实战计算机视觉》

import torch
import torchvision
import os
import time
import matplotlib.pyplot as plt
from torchvision import datasets,models,transforms
from torch.autograd import Variable
%matplotlib inline
# 读取数据集
data_dir = 'DogsVSCats'
# 数据预处理
data_transform = {
   x: transforms.Compose([transforms.Resize([224,224]),
                                        transforms.ToTensor(),
                                        transforms.Normalize(mean = [0.5,0.5,0.5],std = [0.5,0.05,0.5])])for x in ['train','valid']}
# 读取数据集
image_datasets = {
   x: datasets.ImageFolder(root = os.path.join(data_dir,x),transform = data_transform[x])for x in ['train','valid']}
# 装载数据集
dataloader = {
   x: torch.utils.data.DataLoader(dataset = image_datasets[x],
                                            batch_size = 16,
                                            shuffle = True)for x in ['train','valid']}
# 数据预览,注意到由于上面图片的预处理中,图片进行了normaliza,因此不是显示原图
X_example, Y_example = next(iter(dataloader['train']))
print(u'X_example个数{}'.format(len(X_example)))
print(u'Y_example个数{}'.format(len(Y_example)))

index_classes = image_datasets['train'].class_to_idx   # 显示类别对应的独热编码
print(index_classes)

example_classes = image_datasets['train'].classes     # 将原始图像的类别保存起来
print(example_classes)

img = torchvision.utils.make_grid(X_example)
img = img.numpy().transpose([1,2,0])
print([example_classes[i] for i in Y_example])
plt.imshow(img
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值