leetcode#861-mid-翻转矩阵后的得分

给定一个二维矩阵,元素值为0或1,每次可以选择一行或一列进行翻转,翻转后矩阵的每一行按二进制解释求和。目标是找到一种翻转方式,使总和最大化。解决方案包括首先通过行变换使第一列全为1,然后通过列变换使1的数量尽可能多。
摘要由CSDN通过智能技术生成

问题描述

有一个二维矩阵 A 其中每个元素的值为 0 或 1 。

移动是指选择任一行或列,并转换该行或列中的每一个值:将所有 0 都更改为 1,将所有 1 都更改为 0。

在做出任意次数的移动后,将该矩阵的每一行都按照二进制数来解释,矩阵的得分就是这些数字的总和。

返回尽可能高的分数。

示例:

输入:[[0,0,1,1],[1,0,1,0],[1,1,0,0]]
输出:39
解释:
转换为 [[1,1,1,1],[1,0,0,1],[1,1,1,1]]
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39

提示:

1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j] 是 0 或 1

分析:

对于一个翻转序列 S = { r 1 , r 2 , . . . , r n } S=\{ r_1, r_2, ... , r_n \} S={r1,r2,...,rn}其中 r_i 为第i次翻转操作,为列翻转或行翻转。

交换:

交换任意两个翻转操作,结果不变。

对序列S转换为S’,将S中所有行变换提前。即S’为先进行行变换,后列变换。

目标:使得2进制表示的值最大

  1. 对于一个变换序列S,如果变换后矩阵第一列存在0:如果将首位为0的行进行变换,则会使得计算结果更大。

因此,对于要使得最终计算结果最大,矩阵第一列一定全转换为1.

  1. 对于一个列变换,如果列变换后该列的1的数目增多,则计算结果更大。

操作流程:

  • 使用行变换将矩阵的第一列转换为全1
  • 使用列变换将矩阵的其他列变为1的数目多于一半

解题思路

算法

input: mat
output: sum

// row exchange
for row in mat:
	if row[0] == 1 :
		exchange( row )
// col exchange
for col in mat:
	count = col.sum
	if count <= col.size()/2
		exchange( col )
		
// val calculate
sum = 0
for row in mat :
	sum += row.val

数据结构

不用使用额外的数据结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值