推荐系统思考

1.推荐系统的意义

   推荐系统是解决在信息过载情况下,用户如何高效获得感兴趣信息的问题

   a.推荐场景下用户目的不明确,没有最优解;

   b.捕捉用户兴趣的过程如何用数学公式量化是一个难点;

   c.推荐系统解决产品能够最大限度地吸引用户、留存用户、增加用户粘性、提高用户转化率、从而达到公司商业目标连续增长的目的;

2.推荐的逻辑框架

   a.f(U,I,C) 实现用户和物品在特定场景下的匹配; 

   b.推荐模型不是推荐系统的大招,推荐真正的大招是对用户行为和应用场景的观察,基于这些观察,改进出能够表达这些观察的目标和模型结构及特征;

   c.模型三个提升维度:记忆与泛化(通过增加更多特征与样本)、目标拆解(设计科学有效的模型学习目标)、高效与实时性(提升模型与数据的实时性)。

3.推荐模型发展历史

   协同过滤->FM模型->FTRL模型->GBDT+LR->DeepFM->DIN->MMOE->PLE

4.推荐系统中的各种偏差

   a.推荐系统如果一味的使用历史数据,根据用户的历史行为进行推荐,不注重发掘用户的新兴趣,则短期用户容易满足,长期用户容易离开;所以推荐系统需要试探和记忆兼顾,尽量能不时地给用户惊喜感;

   b.推荐空间是由高活跃用户影响的,天生歧视不合群用户,吸引合群用户;

   c.在利用群体特性的同时,推荐系统也在被群体的分布不均反噬;

5.如何解决推荐系统倾向合群用户的偏差

   a.引入新的有价值的信息,为推荐系统增加新的更有价值的水源;

   b.多业务打通,通过统一全局embedding打通各场景兴趣偏差,实现整体业务利益最大化(各场景和);

6.如何合理设定推荐系统优化目标

    a.对推荐系统的改进,不是执着长版,而是改进最短的木板,带动整体提升;

       例子:小说场景(点击用户的次日阅读留存),yotube(时长优化目标),netflext(封面图优化)

7.关于推荐系统的实时性

   a.用户期望更快刷到自己感兴趣的视频、文章,用户的耐心在变低;

   b.推荐系统实时性有两方面:特征实时性和模型实时性【此处包括端侧模型】;

8.模型要和业务场景结合起来

  例子:attention(电商场景下存在兴趣转移,信息流场景下不存在);

9.运营与算法如何合作

  a.专家推荐【新鲜度】;b.往推荐空间中加入新的内容(形成正向循环);

10.其他场景的信息是否一定会对当前场景有用;

   在其他场景点的东西是否代表了用户兴趣;

   用更多的数据是否可以更好地刻画当前业务场景推荐空间;
11.如何成为一名优秀的推荐工程师

  a.知识:具备推荐系统领域相关知识

  b.工具:具备编程能力,熟悉推荐系统相关的技术工具;

  c.逻辑:具备算法基础,思考的逻辑性,条理性

  d.业务:对推荐系统的业务场景十分了解;

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值