1.推荐系统的意义
推荐系统是解决在信息过载情况下,用户如何高效获得感兴趣信息的问题
a.推荐场景下用户目的不明确,没有最优解;
b.捕捉用户兴趣的过程如何用数学公式量化是一个难点;
c.推荐系统解决产品能够最大限度地吸引用户、留存用户、增加用户粘性、提高用户转化率、从而达到公司商业目标连续增长的目的;
2.推荐的逻辑框架
a.f(U,I,C) 实现用户和物品在特定场景下的匹配;
b.推荐模型不是推荐系统的大招,推荐真正的大招是对用户行为和应用场景的观察,基于这些观察,改进出能够表达这些观察的目标和模型结构及特征;
c.模型三个提升维度:记忆与泛化(通过增加更多特征与样本)、目标拆解(设计科学有效的模型学习目标)、高效与实时性(提升模型与数据的实时性)。
3.推荐模型发展历史
协同过滤->FM模型->FTRL模型->GBDT+LR->DeepFM->DIN->MMOE->PLE
4.推荐系统中的各种偏差
a.推荐系统如果一味的使用历史数据,根据用户的历史行为进行推荐,不注重发掘用户的新兴趣,则短期用户容易满足,长期用户容易离开;所以推荐系统需要试探和记忆兼顾,尽量能不时地给用户惊喜感;
b.推荐空间是由高活跃用户影响的,天生歧视不合群用户,吸引合群用户;
c.在利用群体特性的同时,推荐系统也在被群体的分布不均反噬;
5.如何解决推荐系统倾向合群用户的偏差
a.引入新的有价值的信息,为推荐系统增加新的更有价值的水源;
b.多业务打通,通过统一全局embedding打通各场景兴趣偏差,实现整体业务利益最大化(各场景和);
6.如何合理设定推荐系统优化目标
a.对推荐系统的改进,不是执着长版,而是改进最短的木板,带动整体提升;
例子:小说场景(点击用户的次日阅读留存),yotube(时长优化目标),netflext(封面图优化)
7.关于推荐系统的实时性
a.用户期望更快刷到自己感兴趣的视频、文章,用户的耐心在变低;
b.推荐系统实时性有两方面:特征实时性和模型实时性【此处包括端侧模型】;
8.模型要和业务场景结合起来
例子:attention(电商场景下存在兴趣转移,信息流场景下不存在);
9.运营与算法如何合作
a.专家推荐【新鲜度】;b.往推荐空间中加入新的内容(形成正向循环);
10.其他场景的信息是否一定会对当前场景有用;
在其他场景点的东西是否代表了用户兴趣;
用更多的数据是否可以更好地刻画当前业务场景推荐空间;
11.如何成为一名优秀的推荐工程师
a.知识:具备推荐系统领域相关知识
b.工具:具备编程能力,熟悉推荐系统相关的技术工具;
c.逻辑:具备算法基础,思考的逻辑性,条理性
d.业务:对推荐系统的业务场景十分了解;