最常用的3种向量之间的距离计算方法

本文介绍了三种常见的向量距离计算方法:欧氏距离(包括平移不变性和尺度不变性)、曼哈顿距离(平移不变但不具有尺度不变性)以及余弦距离(平移不变且尺度不变,但不满足三角不等式)。这些方法在图像处理、机器学习、自然语言处理和推荐系统等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最常用的向量之间的距离计算方法有以下几种:

欧氏距离

  • 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。对于 n 维向量 x 和 y,它们的欧氏距离定义为:
d(x, y) = sqrt((x1 - y1)^2 + (x2 - y2)^2 + ... + (xn - yn)^2)

欧氏距离具有以下特点:

  • 具有平移不变性,即向量在空间中平移后,其欧氏距离不变。
  • 具有尺度不变性,即向量在空间中缩放后,其欧氏距离不变。
  • 满足三角不等式,即两点之间的距离不超过第三点到这两点的距离之和。

欧氏距离在实际应用中非常广泛,例如:

  • 在图像处理中,欧氏距离可以用于计算图像之间的相似度,例如在图像检索和图像匹配等应用中。

  • 在机器学习中,欧氏距离可以用于计算数据点之间的距离,例如在聚类和分类等应用中。

曼哈顿距离

  • 曼哈顿距离也称为城市距离,它是指两个向量在各个分量上的差的绝对值的总和。对于 n 维向量 x 和 y,它们的曼哈顿距离定义为:

d(x, y) = |x1 - y1| + |x2 - y2| + ... + |xn - yn|

曼哈顿距离具有以下特点:

  • 具有平移不变性,即向量在空间中平移后,其曼哈顿距离不变。
  • 不具有尺度不变性,即向量在空间中缩放后,其曼哈顿距离会发生变化。
  • 满足三角不等式,即两点之间的距离不超过第三点到这两点的距离之和。

曼哈顿距离在实际应用中也比较常见,例如:

  • 在自然语言处理中,曼哈顿距离可以用于计算文本之间的相似度,例如在文本分类和信息检索等应用中。

  • 在计算机视觉中,曼哈顿距离可以用于计算图像的边缘特征,例如在人脸识别和物体识别等应用中。

余弦距离

  • 余弦距离是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。对于 n 维向量 x 和 y,它们的余弦距离定义为:

d(x, y) = 1 - cos(x, y) = 1 - (x1 * y1 + x2 * y2 + ... + xn * yn) / (||x|| * ||y||)

余弦距离具有以下特点:

  • 具有平移不变性,即向量在空间中平移后,其余弦距离不变。
  • 具有尺度不变性,即向量在空间中缩放后,其余弦距离不变。
  • 不满足三角不等式,即两点之间的距离可能超过第三点到这两点的距离之和。

余弦距离在实际应用中主要用于度量向量的相似性,例如:

  • 在文本相似度计算中,余弦距离可以用于计算两段文本之间的相似度。
  • 在推荐系统中,余弦距离可以用于计算用户之间的相似度,从而推荐用户可能感兴趣的物品。

以上是几种常用的向量距离计算方法,在实际应用中可以根据具体情况选择合适的距离计算方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值