# 零基础到红队渗透笔记(5)Shor量子算法对传统密码学的威胁和应对

声明:

本系列笔记只为记录学习过程和师傅们探讨,发布在站内的版本经我本人反复核对,已对涉密及敏感信息进行处理,部分内容收集于网络,如涉及侵权或违规请联系我马上删除文章。
笔记所提到的一切内容,只做学习和交流用途,严禁用于任何非法或未授权的用途!!如有违规操作与本人以及泷羽sec团队无关,切勿触碰法律底线,否则后果自负!!!!
感谢泷羽sec团队提供的免费渗透测试系列视频课程,有兴趣的小伙伴可以点击下面连接进入b站主页B站泷羽sec

Shor 算法对传统密码学的威胁主要来自其对因数分解和离散对数问题的高效求解。这些问题是许多经典加密算法安全性的数学基础。Shor 算法是一种用于整数分解的量子算法,由彼得·肖(Peter Shor)在 1994 年提出。它可以在多项式时间内找到一个大整数 N N N 的质因数,从而对传统 RSA 加密等基于因数分解难题的密码体系构成威胁。


核心思想

Shor 算法结合了量子计算的量子并行性量子傅里叶变换,可以高效解决整数因数分解问题。其基本思路是将因数分解问题转化为一个周期求解问题,利用量子计算的能力快速找到周期。

问题转化

N N N 是一个大整数,要找到它的一个非平凡因数(既不是 1 1 1 也不是 N N N)。假设 a a a 是小于 N N N 的一个整数,满足 gcd ( a , N ) = 1 \text{gcd}(a, N) = 1 gcd(a,N)=1,Shor 算法通过以下步骤寻找 N N N 的因数:

  1. 构造周期性函数: 定义函数:
    f ( x ) = a x m o d    N f(x) = a^x \mod N f(x)=axmodN它是周期性的,周期记为 r r r,满足:

    a r ≡ 1 ( m o d N ) a^r \equiv 1 \pmod{N} ar1(modN) r r r a a a 的最小正整数周期(称为幂模周期)。

  2. 利用周期性求因数: 如果找到周期 r r r,可以计算:
    gcd ( a r / 2 − 1 , N ) 和 gcd ( a r / 2 + 1 , N ) \text{gcd}(a^{r/2} - 1, N) \quad \text{和} \quad \text{gcd}(a^{r/2} + 1, N) gcd(ar/21,N)gcd(ar/2+1,N)至少一个结果会是 N N N 的非平凡因数。

算法步骤

  1. 随机选择一个数 ** a a a**​ 确保 gcd ( a , N ) = 1 \text{gcd}(a, N) = 1 gcd(a,N)=1。如果 gcd ( a , N ) > 1 \text{gcd}(a, N) > 1 gcd(a,N)>1,则直接得到因数。
  2. 量子态的初始化: 准备两个量子寄存器,一个存储输入 x x x,另一个存储输出 f ( x ) f(x) f(x)。初始化为:
    1 Q ∑ x = 0 Q − 1 ∣ x ⟩ ∣ 0 ⟩ \frac{1}{\sqrt{Q}} \sum_{x=0}^{Q-1} |x\rangle |0\rangle Q 1x=0Q1x∣0其中 Q Q Q 是大于 N 2 N^2 N2 的一个次幂数。
  3. 量子并行计算 ** f ( x ) f(x) f(x)**​ f ( x ) = a x m o d    N f(x) = a^x \mod N f(x)=axmodN 写入量子寄存器,形成叠加态:
    1 Q ∑ x = 0 Q − 1 ∣ x ⟩ ∣ f ( x ) ⟩ \frac{1}{\sqrt{Q}} \sum_{x=0}^{Q-1} |x\rangle |f(x)\rangle Q 1x=0Q1xf(x)⟩
  4. 量子傅里叶变换 (QFT): 对第一个寄存器进行量子傅里叶变换,得到 f ( x ) f(x) f(x) 的周期信息。
  5. 测量结果提取周期: 对傅里叶变换后的量子态进行测量,得到一个与周期 r r r 有关的值。通过经典计算进一步确定 r r r
  6. 验证周期并求因数: 如果 r r r f ( x ) f(x) f(x) 的周期,检查 a r ≡ 1 ( m o d N ) a^r \equiv 1 \pmod{N} ar1(modN)。如果是,计算 gcd ( a r / 2 − 1 , N ) \text{gcd}(a^{r/2} - 1, N) gcd(ar/21,N) gcd ( a r / 2 + 1 , N ) \text{gcd}(a^{r/2} + 1, N) gcd(ar/2+1,N) 得到因数。

算法的优势

  • 传统算法(如试除法或 ECM)因数分解需要超多项式时间(指数级)。
  • Shor 算法在量子计算机上可以以多项式时间运行,复杂度为 O ( ( log ⁡ N ) 3 ) O((\log N)^3) O((logN)3),极大提高效率。

实际挑战

虽然 Shor 算法在理论上非常强大,但实现它需要具备以下条件

  1. 稳定且可扩展的量子计算机。
  2. 高精度量子操作和量子纠错技术。
  3. 足够的量子比特数。

Shor 量子算法对传统密码学的威胁

Shor 算法对传统密码学的威胁主要来自其对因数分解和离散对数问题的高效求解。这些问题是许多经典加密算法安全性的数学基础。

1. RSA 加密的威胁
  • RSA 原理: RSA 的安全性依赖于大整数的因数分解难题。给定 N = p ⋅ q N = p \cdot q N=pq(两个大素数的乘积),解出 p p p q q q 是非常困难的。
  • Shor 算法的影响: Shor 算法可以在多项式时间内分解 N N N,直接破解 RSA 密钥。随着量子计算机规模的扩大,当前使用的 2048 位甚至 4096 位 RSA 密钥可能不再安全。
2. 椭圆曲线密码学(ECC)的威胁
  • ECC 原理: 椭圆曲线加密基于离散对数问题的困难性,利用椭圆曲线上的点运算实现安全通信。
  • Shor 算法的影响: 它也可以在多项式时间内解决离散对数问题,从而攻破 ECC。ECC 系统(如 ECDSA 和 ECDH)广泛用于移动设备和 IoT 中,一旦量子计算成熟,将面临同样风险。
3. Diffie-Hellman 密钥交换的威胁
  • DH 原理: Diffie-Hellman 协议的安全性基于离散对数问题,允许两方安全交换密钥。
  • Shor 算法的影响: 离散对数问题的快速解决将导致 Diffie-Hellman 无法保障密钥安全,密钥交换过程可以被量子计算机实时拦截和破解。
4. 数字签名的威胁
  • 基于因数分解或离散对数的数字签名方案(如 RSA 签名、DSA 和 ECDSA)也容易被 Shor 算法攻破,导致伪造签名和篡改消息的风险。

安全风险

加密算法被破解的风险

传统非对称加密算法(如RSA、ECC)可能被量子计算机上的Shor算法快速破解。哈希函数可能受到量子计算的攻击,导致碰撞攻击更容易实施。

“现在收获,以后解密”风险

攻击者可能在当前收集加密数据,等待量子计算技术成熟后进行解密。

区块链安全风险

量子计算可能破解区块链用户的私钥,威胁加密货币的安全。

量子密钥分发风险

量子信道可能受到干扰,影响密钥的生成和传输,设备和系统可能存在安全漏洞,被攻击者利用。

量子计算系统自身风险

量子计算系统存在错误和噪声问题,可能被攻击者利用来破坏计算过程或获取敏感信息。

供应链安全风险

硬件设备或软件可能被植入恶意代码。


传统密码学的安全应对

量子计算对密码学的威胁促使密码学领域研究抗量子密码学(Post-Quantum Cryptography, PQC)。这些算法在设计时考虑了量子计算的攻击能力,利用数学问题的复杂性保证安全性。

1. 抗量子密码学的核心算法

以下算法基于问题当前被认为对量子计算机难以解决的数学难题:

  1. 基于格的密码学(Lattice-Based Cryptography)

    • 依赖于近似最短向量问题(SVP)和学习同余问题(LWE)。
    • 算法:Kyber(加密)、Dilithium(签名)。
    • 特点:效率高,已成为抗量子密码学的领先候选。
  2. 基于哈希的签名(Hash-Based Signatures)

    • 利用 Merkle 树等技术,基于哈希函数的安全性。
    • 算法:XMSS(可扩展 Merkle 树签名)。
    • 特点:理论简单,适合长期签名验证。
  3. 基于编码的密码学(Code-Based Cryptography)

    • 基于困难的解码问题,如 McEliece 加密系统。
    • 特点:安全性强,但密钥尺寸较大。
  4. 基于多变量多项式的密码学(Multivariate Cryptography)

    • 依赖于求解多变量非线性方程组的困难性。
    • 特点:适用于数字签名,但性能有限。
  5. 基于同源(Isogeny-Based Cryptography)

    • 使用超奇异椭圆曲线同源问题。
    • 算法:SIKE(Supersingular Isogeny Key Encapsulation)。
    • 特点:密钥较小,但计算成本高。
2. NIST 抗量子密码标准化进程

美国国家标准与技术研究院(NIST)于 2016 年启动了抗量子密码标准化计划。经过多轮评审,以下算法已成为主流候选(截至 2024 年):

  • Kyber:用于密钥交换。
  • Dilithium:用于数字签名。
  • SPHINCS+ :基于哈希的签名方案。
3. 混合密码方案

为了平稳过渡到抗量子时代,现阶段建议使用传统密码与抗量子密码的混合方案。例如,在 TLS 协议中同时使用 RSA 和 Kyber 进行密钥交换。

4. 量子密码学

量子密码学利用量子力学原理,如量子密钥分发(QKD),实现通信的无条件安全。尽管 QKD 在理论上非常安全,但其实际部署成本高,适用范围有限。


中国在抗量子密码领域的研究与应用

1. 抗量子密码迁移白皮书发布

2024年6月,相关机构发布了《后量子密码迁移白皮书》,回顾了传统密码技术面临的量子威胁,梳理了现有后量子密码的技术路线,提出了我国后量子密码迁移的发展建议。来源:CipherOn Cloud

2. 抗量子攻击密码芯片研究进展

2022年7月,清华大学刘雷波教授在第四届华人芯片设计技术研讨会上,详细讲解了抗量子攻击密码的概念,分析了抗量子密码部署的时间节点,并对抗量子密码芯片设计的三大挑战进行了剖析。来源:秘密订阅

3. 抗量子密码研究与工程实现技术论坛

2023年12月,北京市密码管理局指导、北京商用密码行业协会主办的“2023抗量子密码研究与工程实现技术论坛”成功举办。 论坛聚焦抗量子密码技术的发展与经验,研讨抗量子密码工程实现与安全应用。来源:知乎专栏

4. 学术研究与技术发展

中国科学院信息工程研究所研究员路献辉在论坛上以“抗量子密码技术进展”为主题,从现代密码学基础理论体系的角度阐释了抗量子密码算法设计的根本挑战,并介绍了各类抗量子密码算法在参数尺寸、计算性能、功能方面的优劣对比。来源:知乎专栏


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值