LCP 18. 早餐组合(dp背包思想优化)

48 篇文章 1 订阅

小扣在秋日市集选择了一家早餐摊位,一维整型数组 staple 中记录了每种主食的价格,一维整型数组 drinks 中记录了每种饮料的价格。小扣的计划选择一份主食和一款饮料,且花费不超过 x 元。请返回小扣共有多少种购买方案。

注意:答案需要以 1e9 + 7 (1000000007) 为底取模,如:计算初始结果为:1000000008,请返回 1


示例 1:

输入:staple = [10,20,5], drinks = [5,5,2], x = 15

输出:6

解释:小扣有 6 种购买方案,所选主食与所选饮料在数组中对应的下标分别是:
第 1 种方案:staple[0] + drinks[0] = 10 + 5 = 15;
第 2 种方案:staple[0] + drinks[1] = 10 + 5 = 15;
第 3 种方案:staple[0] + drinks[2] = 10 + 2 = 12;
第 4 种方案:staple[2] + drinks[0] = 5 + 5 = 10;
第 5 种方案:staple[2] + drinks[1] = 5 + 5 = 10;
第 6 种方案:staple[2] + drinks[2] = 5 + 2 = 7

【思路】:
本题用暴力会超时,因为数据量是10的5次方。暴力是N^2的复杂度。

因此我们需要一个O(n)的算法。

这里我联想到用动态规划的背包思想,可以以O(1)的代价来获取:“当我有x元钱时,能买几种物品” 这个问题的解。

如果这样的话,就可以省去一层循环了。


【代码】:

/**
 * @param {number[]} staple
 * @param {number[]} drinks
 * @param {number} x
 * @return {number}
 */
var breakfastNumber = function(staple, drinks, x) {
    var res = 0;
    let mod = 1000000007;
    staple.sort((a,b)=>a-b);
    drinks.sort((a,b)=>a-b);
    let dplen = Math.max(drinks[drinks.length - 1], x - staple[0]);
    let dp = new Array(dplen + 1).fill(0) 
    for(let i = 0;i < drinks.length;i++){
        dp[drinks[i]]++;
    }
    for(let i = 1;i < dp.length;i++){
        if(dp[i] != 0){
            dp[i] = dp[i - 1] + dp[i];
        }else{
            dp[i] = dp[i - 1];
        }
    } 

    for(let i = 0;i < staple.length;i++){
        if(staple[i] > x)   break;
        let shengyu = x - staple[i] ;  
        res = (res + dp[shengyu]) % mod; 
    }
    return res;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值