小扣在秋日市集选择了一家早餐摊位,一维整型数组 staple 中记录了每种主食的价格,一维整型数组 drinks 中记录了每种饮料的价格。小扣的计划选择一份主食和一款饮料,且花费不超过 x 元。请返回小扣共有多少种购买方案。
注意:答案需要以 1e9 + 7 (1000000007) 为底取模,如:计算初始结果为:1000000008,请返回 1
示例 1:
输入:staple = [10,20,5], drinks = [5,5,2], x = 15
输出:6
解释:小扣有 6 种购买方案,所选主食与所选饮料在数组中对应的下标分别是:
第 1 种方案:staple[0] + drinks[0] = 10 + 5 = 15;
第 2 种方案:staple[0] + drinks[1] = 10 + 5 = 15;
第 3 种方案:staple[0] + drinks[2] = 10 + 2 = 12;
第 4 种方案:staple[2] + drinks[0] = 5 + 5 = 10;
第 5 种方案:staple[2] + drinks[1] = 5 + 5 = 10;
第 6 种方案:staple[2] + drinks[2] = 5 + 2 = 7。
【思路】:
本题用暴力会超时,因为数据量是10的5次方。暴力是N^2的复杂度。
因此我们需要一个O(n)的算法。
这里我联想到用动态规划的背包思想,可以以O(1)的代价来获取:“当我有x元钱时,能买几种物品” 这个问题的解。
如果这样的话,就可以省去一层循环了。
【代码】:
/**
* @param {number[]} staple
* @param {number[]} drinks
* @param {number} x
* @return {number}
*/
var breakfastNumber = function(staple, drinks, x) {
var res = 0;
let mod = 1000000007;
staple.sort((a,b)=>a-b);
drinks.sort((a,b)=>a-b);
let dplen = Math.max(drinks[drinks.length - 1], x - staple[0]);
let dp = new Array(dplen + 1).fill(0)
for(let i = 0;i < drinks.length;i++){
dp[drinks[i]]++;
}
for(let i = 1;i < dp.length;i++){
if(dp[i] != 0){
dp[i] = dp[i - 1] + dp[i];
}else{
dp[i] = dp[i - 1];
}
}
for(let i = 0;i < staple.length;i++){
if(staple[i] > x) break;
let shengyu = x - staple[i] ;
res = (res + dp[shengyu]) % mod;
}
return res;
};