高等数学上核心概念:谈谈导数,微分,积分之间的关系(微分篇)

接上一篇博客,导数讲完之后,来讲微分
https://blog.csdn.net/weixin_40163242/article/details/89003225

话说微分这个概念是很容易被误解的。因为它往往是和导函数在一起出现的,所以,我大一的时候,那时没怎么理解这其中的道理,因为很多题求微分的过程就是求导,所以认为微分和导数就是没什么差别的东西。这其实并不是我一个人这样误解了,很多人都是这样。这也是我们教育中比较失败的一点,为了应付考试不挂科,总是过多的去教一些换元法呀这种计算方法,而对真正的数学概念却模模糊糊,学到最后,题目会做一大堆,但别人问你什么是微分,根本搞不清楚。

【问题引入】:
你能很方便地估算出这几个值吗?
在这里插入图片描述
我想,如果你不知道微分,在不用计算器的情况下,是很难计算出来的吧。因此,微分此时就有了重要作用。

那么什么是微分呢?

首先,我们看这样一个经典例子,正方形薄片面积问题:
正方形薄片原面积是A = x0 ^ 2,由于热胀冷缩,边长增加了△x,问你面积增加了多少
在这里插入图片描述
很明显,能轻松算出,△A应该就是上面那个表达式。
这里我们注意一下,当我们的△x非常非常小的时候,(△x)^2这个量相对于
2 *x0 * △x其实是可以忽略不计的。
因为当△x趋近于0,(△x)^2是相对于 △x的一个高阶无穷小。
在这里插入图片描述
所以这个式子:2 *x0 * △x,才是面积增量的主要部分,又因为它是△x的线性函数,我们又称之为线性主部。因此,当△x特别小时,我们计算面积的增量,实际上就可以用近似值2 *x0 * △x来代替了!

我们把2 *x0 * △x称为函数y = x ^ 2在x0处的微分!记为dy|x = x0

微分定义:o(△x)是△x的一个高阶无穷小量
在这里插入图片描述
一般地
在这里插入图片描述

所以微分和导数显然不是一个东西!导数是一个极限值,一个变化率。而微分是函数因变量的增量近似值!


微分的几何意义:

通过几何意义,你应该可以更好的理解微分和导数的差别
在这里插入图片描述
这里很明显可以看到,微分和导数是完全不同的两个概念。一个是dy,一个是tan(a),所以现在应该知道,将导数和微分理解为同一个东西是多么愚蠢的想法了吧!


可导和可微的关系

这里因为两者都涉及到△x,△y所以很自然的联想到它们之间会不会存在某种关系。
首先给出结论:可导是可微的充要条件!
首先证明必要性(可导可以推可微)

因为根据导数的定义
如果可导,一定有△y / △x,当△x趋近于0的时候,极限存在为A=  f,(x0)
所以,我们根据定理,可以有△y / △x = f,(x0) + o;
所以△y = f,(x0) * △x + o *△x;	(o为一个无穷小)
因此,满足可微的条件式
所以可导是可以推出可微的

记下来证明充分性(可微可以推可导)

因为可微
所以△y = A* △x + o;	o是一个 △x的高阶无穷小
我们现在要推△y / △x,当△x趋近于0的时候极限存在
所以同除 △x
因此右边变为A + (o / △x);
所以最后求得极限是A,因为o是高阶无穷小,最后(o / △x)极限为0
因此△y / △x的极限是A,极限存在
所以可微也可以推出可导!

说了这么多,那么微分到底有什么卵用呢?

还记得我们刚开始给出的那个问题吗?现在我们可以用微分的方法去解它了。
第一题过程如下:
在这里插入图片描述
我用计算器所得结果为
在这里插入图片描述
可以看到,两者计算所得到的结果是多么相近啊!误差非常的小!我们前面已经通过 数学方法计算出来了,dy与△y 两者的误差仅为△x的一个高阶无穷小。

第二题我就不演示了,计算结果为9.995
计算器算得的结果:
在这里插入图片描述
也非常相近,真是太厉害了!


其实微分除了求近似值这种比较直接的用处之外,还有一些间接的用处呢!最典型的就是“化曲为直”的思想了

是这样的,每一个小段△x的范围,当△x趋近于0的时候,对于这一段△x上的切线的dy和曲线的△y是近似相等的。因此,不就是相当于这一段上的曲线和切线几乎重合吗?所以,在这一小段△x上,我们可以用切线来代替曲线研究问题,这就是“化曲为直”的思想了。这个思想很有意义,因为直线肯定比曲线好研究啊!


那么讲述到这里,可能有的人会问了,那不定积分和定积分中为什么会有微分的符号dx呢?至少我当初研究到这个地方来的时候,脑海里不免会有这样的疑问


不定积分中有dx的原因

这是我们一般不定积分的写法:
在这里插入图片描述
F(x)是f(x)的原函数。此时我们可以发现,f(x)dx不就是我们熟悉的F(x)的微分吗?此时f(x)是F(x)的导数嘛!所以我们可以写成dF(x)的形式。然后我们现在用一个积分符号 ∫ 表示,将这每一小段的微分,即每一小段一小段的小直线,给它“累加”起来,最后不就成了原函数F(x)了吗?

这个道理,网上有的网友说得很形象。dF(x)就好像是将一个大西瓜F(x)切成一小块一小块的西瓜条,然后当我们需要一整个大西瓜F(x)的时候,用一个积分符号 ∫ 就可以将一小块一小块的西瓜累积而成大西瓜了!

因此,不定积分中的dx是一定不可以少的!


定积分中有dx的原因:

因为定积分中也需要先对F(x)的微分,即dF(x) = f(x)dx,进行一次累积操作,得到原函数F(x)。因此,用到了积分符号 ∫ ,得到原函数之后,再就对原函数a, b两点处求差值。
当然,从f(x)的角度来理解,定积分就是我们熟悉的面积。


微分总结大概就是这些吧,得赶紧睡觉去了

  • 51
    点赞
  • 156
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
导数在数学中是一个非常重要的概念,其在机器学习和深度学习中也扮演着至关重要的角色。TensorFlow作为一款流行的深度学习框架,在其2.x版本中提供了丰富的导数计算函数,本文将对TensorFlow 2.x中的导数计算进行详细的解析。 首先,TensorFlow中导数计算的核心就是“tf.GradientTape”函数,该函数记录执行的操作,并自动构建一个对应的计算。在计算中,我们可以根据需要定义一系列输入张量或者变量,并用这些对象进行复杂的计算。之后,再通过“tape.gradient”函数来计算导数。比如,在线性回归的例子中,我们可以将设计矩阵X和标签向量y作为输入张量,然后定义参数张量w,并对其进行计算。最后,我们用“tape.gradient”函数对w进行求导,即可得到损失对其的梯度。 除了上述基本实现之外,TensorFlow 2.x中还提供了丰富的导数计算函数,比如“tf.gradients”函数、自动微分工具“tf.autodiff”、高阶导数函数“tf.hessians”、方向导数函数“tf.custom_gradient”等等。这些函数可以根据用户的需要实现对导数的计算、控制求导的方式、实现高阶导数计算等等。在实际使用中,我们可以根据具体的需求选择使用不同的导数计算函数,比如在求解梯度下降法的过程中,我们可以根据需要计算一阶或二阶导数,也可以选择自动微分工具来实现快速又可靠的导数计算。 总之,TensorFlow 2.x中的导数计算是一个非常重要的功能,在深度学习的应用中起着至关重要的作用。通过使用不同的导数计算方法,我们可以实现对复杂模型参数的优化、实现高阶导数计算、实现特殊的导数控制等等功能。因此,熟练掌握TensorFlow 2.x中的导数计算函数是每一位深度学习从业者必备的能力。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值