【问题描述】
给定一棵二叉树,其中每个节点都含有一个整数数值(该值或正或负)。设计一个算法,打印节点数值总和等于某个给定值的所有路径的数量。注意,路径不一定非得从二叉树的根节点或叶节点开始或结束,但是其方向必须向下(只能从父节点指向子节点方向)。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ / \
7 2 5 1
返回:
3
解释:和为 22 的路径有:[5,4,11,2], [5,8,4,5], [4,11,7]
【代码】:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int pathSum(TreeNode root, int sum) {
if (root == null) {
return 0;
}
int pathCount = findPath(root, sum); // 以当前节点为起点的路径数量
int leftCount = pathSum(root.left, sum); // 以左子节点为起点的路径数量
int rightCount = pathSum(root.right, sum); // 以右子节点为起点的路径数量
return pathCount + leftCount + rightCount;
}
private int findPath(TreeNode node, int target) {
if (node == null) {
return 0;
}
int count = 0;
if (node.val == target) {
count++;
}
count += findPath(node.left, target - node.val); // 继续向左子树寻找路径
count += findPath(node.right, target - node.val); // 继续向右子树寻找路径
return count;
}
}
【总结】
本题主要是用到这样的一个递归思路:
对于一个根结点为root的树,其满足要求的路径数量 = 包含root节点的路径数 + 左子树满足要求的路径 + 右子树满足要求的路径
这也是很多类似深搜题的常见套路。一个递归里面套着另一个递归。