2019.03.26
参考资料:mooc西华大学高等数学课程
昨天学习了数列的极限,今天我们来讨论函数的极限
首先我们来讨论当 自变量趋近于无穷大 的时候,函数的极限
很明显,x->无穷,包含两种情况,x->正无穷和x->负无穷
1.x->正无穷时的定义其实可以参照数列的定义(很像):
对于任意的e > 0,存在X > 0
使得所有的x > X的 |f(x) - A| < e。那么函数在x->正无穷时存在极限A
这里注意,与数列极限的定义唯一不同的地方就是,X不再一定要求是正整数了。原因很简单,数列中的定义域是所有自然数,而函数是一切的实数。
这个定义说通俗点就是,如果函数在正无穷上极限存在,那么从某一个位置X开始之后的所有x对应的f(x)到极限A的距离,肯定能无限小
2.x->负无穷时的定义(可以参考正无穷时的定义)
对于任意的e > 0,存在X > 0
使得所有的x < -X 的 |f(x) - A| < e。那么函数在x->负无穷时存在极限A
跟正无穷的极限定义类似,强调的是某一个位置之后的所有x对应的函数值与极限的距离可以无限小!
3。 在理解了上述极限的定义之后,那么x->无穷时的极限定义就出来了:
对于任意的e > 0,存在X > 0
使得所有的|x| > X 的 |f(x) - A| < e。那么函数在x->无穷时存在极限A
无穷时,就是相当于包括了正无穷和负无穷两种情况。
因此顺其自然的有一个定理:
x趋近于无穷大的时候极限为A 的充分必要条件是 x趋近于正无穷时的极限为A且x趋近于负无穷时的极限为A
如果说理解了定义,这个定理就是顺其自然的
下面看看x趋近于无穷时的几何解释,更直观:
下面我们探讨函数极限的另一种情况
当自变量趋近于有限值时的函数的极限
可以看看上面这两个函数,我们讨论在x趋近于2的时候,函数的极限。
那么其实我们根据前面所学的极限知识,都可以自己推导一下这个的定义了。
对于任意的e > 0,都存在一个X > 0
使得Uo(x0, X)中的所有x对应的函数值f(x)满足一个|f(x) - A| <e
这个定义是我自己仿照前面的思想推出来的,虽然和书上的有细微差别,但就是字母和表达方式的差别,意思完全一样,我觉得这个表达更直观。
根据前面的极限思想,那么x在x0处存在极限A,不就是说x在x0的某个去心邻域内,都有f(x)到A的距离比任意小都小吗? 和前面的极限思想大同小异。
下面是几何解释:
下面来几道例题:
1.证明函数y = x在x趋近于正无穷的时候,极限不存在
似乎感觉画图一下就出来了,这里我们采用定义严格证明。
用反证法证明! 先假设极限存在
2.证明函数y = 1/ x在x->正无穷的时候极限值为0
过程类似
最后再谈谈和自变量趋近于有限值相关的,左右极限的概念。
x从左边趋近于x0,称为x0的左极限,记为x->x0-
同理也有右极限x0+
定理:函数在x趋近于x0时存在极限值A的充要条件为:x在x0处左右极限都存在
且都相等为A!
这个定理常用于判断函数在某个点极限是否存在。如果两边极限值不等,即不存在
其实有点像前面讲到的无穷大时的那个极限定理,无穷大时极限存在的充要条件是
正无穷和负无穷极限都存在且相等!
通过今天的学习,终于弄清楚了当初大一没有弄懂的函数极限的概念,记得当时这里学得一团糟,现在终于理顺了。