- 博客(18)
- 收藏
- 关注

原创 【影像组学导论】第一部分:官方定义解读。这咋整?读懂这个频道就够了!
【影像组学导论】第一部分:官方定义解读。这咋整?读懂这个频道就够了!公众号:挺烦的统计“请问特征提取之后我该如何分析?”“我想找出有统计学差异的特征,要用什么统计学方法?”“LASSO的内涵是什么?真的这么厉害?”“Rad-score是什么?到底要怎么算?”“那张一条一条的横线,有分值的….,对就是 落-寞-gram! 是什么意思?怎么画??”“鄙人课题简单粗暴,有哪些高大上的统计图可以撑场面”?“我想做一批基于影像组学的胶质瘤鉴别应用研究,最少需要搜集多少病例?..
2021-03-05 21:35:06
3743

原创 【重磅】模型、假设函数、损失函数、决策函数
洗脑概念:假设函数 = 假设空间 = 模型包括:①决策函数模型: 等,例如:多元回归、LASSO等②条件概率分布模型:等,例如:Logistic等以下我就用“假设函数” 这四个字来说吧。当模型的参数通过一系列方法(GD等最优化算法)求出后,此时模型已经出来了,这个时候,我们“模型” 与 “假设函数”,就有区别了,模型应该称作 “决策函数”,决策函数的符号有时也用 表示,带...
2018-07-25 22:59:30
8201
1

原创 ## 入坑誓言
看了很多的书籍,资料,各有各的说法,各有各的写法,很不统一,我将在此博客整理出比较完整、比较全面的知识点, 综合我看过的资料,暂时把主要的精髓提炼出来,(可能来龙去脉讲述不会太多),由于又在实习,才发现时间根本不够用,校招也快到了,争取尽快看多一点,并记录下来,(写在纸上你会发现 你的纸会越来越多,越来越乱 [捂脸]),每一篇都有不同格式,字母表示,比如样本表示法,向量表示法,看得资料越多越达到一...
2018-07-22 21:20:22
285

原创 【机器学习】Logistic Regression 逻辑回归
Logistic Regression 逻辑回归 ---对数线性模型涉及概念:样本集、特征(变量)、向量、矩阵、损失函数、最优化方法、梯度下降掌握要求:独立、手写推倒至少5遍,用Python实现,解决一个实际案例。Table of ContentsLogistic Regression 逻辑回归一、Logistic distribution 逻辑分布二、逻辑回归...
2018-07-22 19:50:02
1665
3

原创 【重磅】批量梯度下降、随机梯度下降、小批量梯度下降
梯度下降有三种1. 批量梯度下降(Batch Gradient Descent,BGD)2. 随机梯度下降(Gradient Descent,SGD)3. 小批量梯度下降(Mini-Batch Gradient Descent,MBGD)不同点在于损失函数使用的样本量的不同,其根本流程是一毛一样的啊!各有优缺点。方法 说明 优点 缺点 适用实例 ...
2018-07-22 16:10:51
748
原创 【重磅】2021年SCI影响因子滚烫式公布!各领域TOP期刊!(附下载链接)
一年又一年,一分又一分,您关注/投稿的爱豆期刊,它涨粉(分)了吗?还记得2020年公布的影响因子吗?(点击此处穿越看)今年公布的SCI包含了来自113个国家和地区、超过12000种期刊,包括自然科学和社会科学等254个学科门类,其中有1600多种期刊是完全开放获取的。新增期刊有207个,其中中国新增16本,占比8%,美国新增50本。删除期刊10本,占比0.05%。官网:https://jcr.clarivate.com/jcr/browse-journalsSCI(Scienti...
2021-08-31 00:00:11
2144
原创 【影像组学导论】Radiomics实现之R语言入门!
以下是本文内容:一、引语二、R&Rstuio简介三、Rstudio优势四、R软件下载与安装五、Rstudio下载与安装六、Rstudio窗口调试一、引语在“导论”的前一篇中,我们提到了国内前者学者2018年经典影像组学JCO(IF = 32.956!)文章《Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis
2021-08-19 22:10:24
2695
1
原创 【影像组学导论】第二部分:具体应用方向?十大维度供你参考!
我们已经知道,影像组学是在一群影像上提取出肉眼看不见的“特征”,结合临床的资料与病理标准,分析他们,并且构建出一定的模型,应用于患者的影像上,从而协助临床医生,判断患者是否需要用药?肿瘤是良性还是恶性?肿瘤处在第几期?他们的3年生存概率为多少?他们接下来的最佳治疗方案是?在上一篇我们谈到“影像组学的官方定义”,后台大部分的留言并不是在提问,而是在。。。催更!好吧,如今……她来了!“影像组学可以应用在什么方面?”这是许多研究者经常与我交流的问题。这个问题非常大,相信大家理解后感觉绝大部分的...
2021-03-19 14:54:49
1217
2
原创 【重磅】2020年SCI影响因子正式公布!各领域TOP期刊!(附下载链接)
2020年由于疫情的影响,期刊引证报告(Journal Citation Reports, JCR)公布的时间(2020年6月末)相较去年推迟了1周发布。今年公布的SCI包含了来自83个国家和地区、超过12000种期刊,包括自然科学和社会科学等236个研究领域,其中有1600多种期刊是完全开放获取的。新增期刊有351个,其中开放的有178个。SCI(Scientific Citation Index)论文,是指科学引文索引所收录的SCI期刊上刊登的学术期刊论文。对期刊之间的引用和被引用数据进行统...
2020-08-22 23:59:37
12109
原创 线性表的抽象数据类型
线性表的抽象数据类型OperationInitList(*L):初始化操作,建立一个空的线性表。ListEmpty(L):判断线性表是否为空表。若为空表,返回true;否则,返回false。ClearList(*L):将线性表清空。GetElem(L,i,*e):将线性表L中的第i个位置的元素值,返回给e。LocateElem(L,e):在线性表中L中查找与e相等的元素。若存...
2018-07-31 22:18:28
3343
2
原创 【重磅】一个完整的机器学习项目
Table of Contents一、 项目概述(一) 项目概览(二) 规划问题(三) 核实假设二、 数据获取(一) 下载数据(二) 查看数据结构(三) 数据分割(训练集、测试集)三、 数据可视化、数据规律(一) 地理数据可视化(二) 查找关联(x与y)(三) 属性组合试验(特征组合)四、 为机器学习算法准备数据(一) 数据清洗(二) 处...
2018-07-29 20:20:41
633
原创 【重磅】数据分割:训练集、验证集、测试集
理论上 随机分割成 训练集、验证集、测试集,但是由于每次随机都不同,所以 训练集、验证集用交叉验证的分配方式,进行训练和选出较优超参数。(什么是超参数?之后会另起一篇说明) 一般 训练集:测试集 = 8:2 随机分配,若想复现,可采取:1. 设定随机种子,洗牌指数2. 对每个样本设置特定ID,计算每个ID的哈希值,提取20%。(补:SKlearn)重要:生成测试...
2018-07-29 16:30:54
6144
原创 【机器学习】LASSO、Ridge回归算法
一、LASSO严格来说五个字母都要大写,Lasso其实是错误的因为全称:least absolute skrinkage and selection operator二、Ridge 岭回归
2018-07-28 14:27:54
1971
原创 【重磅】Loss Function损失函数
Table of Contents一、0-1损失函数二、绝对值损失函数(Absolute Loss Function)三、平方损失函数(Square Loss Function)四、指数损失函数(Exponential Loss Function)五、对数损失函数(Logarithm Loss Function)六、铰链损失函数(Hinge Loss Function)...
2018-07-28 12:36:13
1453
原创 【重磅】特征缩放:标准化、线性函数归一化
特征缩放其实就是对特征进行变换,主要有:一、线性函数归一化(Min-Max scaling),也称 归一化(Normalization)二、标准化(standardization) 归一化、标准化 特征缩放方式 过程 结果性质 Scikit-Learn 中的函数 区别 归一化 减去 最小值,再除以 最大值与最小值的差 一般缩放到0-1范...
2018-07-22 18:28:40
1057
原创 【重磅】过拟合&欠拟合
Table of Contents一、 过拟合(一) 来源说明(二) 表现(三) 过拟合处理,解决办法1. 增加更多训练数据2. 减小训练数据的噪声3. 简化模型二、 欠拟合(一) 来源说明(二) 表现(三) 欠拟合处理,解决办法一、 过拟合(一) 来源说明参数越多,模型越复杂,越容易导致过拟合。(二) 表现模型在训练集上表现效...
2018-07-22 16:45:40
1852
原创 【重磅】数据思维
一、批判性数据思维1.数据分析时要有对照组(安慰剂,包括医生、病人)对数据“大”、“小”、“好”、“坏”的解读,要有对照组。 参照系:竞争对手、自己等。2. 抽样的范围:不能仅限于某平台,要散步大多数领域。3. 所有统计分析都有误差,小心!多重比较。防范?! 二、数据价值1. 降低制造成本:电视接口、设备。2. 增加收入:推荐(个性化)。3. 信用评估:降低风险...
2018-07-22 16:33:01
309
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人