我们已经知道,影像组学是在一群影像上提取出肉眼看不见的“特征”,结合临床的资料与病理标准,分析他们,并且构建出一定的模型,应用于患者的影像上,从而协助临床医生,判断患者是否需要用药?肿瘤是良性还是恶性?肿瘤处在第几期?他们的3年生存概率为多少?他们接下来的最佳治疗方案是?
在上一篇我们谈到“影像组学的官方定义”,后台大部分的留言并不是在提问,而是在。。。催更!好吧,如今……她来了!
“影像组学可以应用在什么方面?”这是许多研究者经常与我交流的问题。这个问题非常大,相信大家理解后感觉绝大部分的影像类研究都能蹭上一点组学技术。
小编根据文献和自己的经验简单总结了影像组学的几个应用方面,从以下十大维度供大家参考!(所有参考文献下载链接见文末)
【第一维度】
大咖田捷教授在其PPT内展示,围绕基于结直肠癌诊疗全过程,说明人工智能中的影像组学是如何使得医学治疗更加精准的,这个案例从临床出发,提出3个问题:
(1)术前,新辅助治疗是否达到pCR?
(2)术中,是否需要进行淋巴结清扫?
(3)术后,是否需要进行辅助放化疗?
我们可以看出这么一个逻辑:
术前新辅助疗效评估
↓
术中淋巴结转移预测
↓
术后化疗必要性预测
参考文献:1.1、1.2、1.3
在术前阶段:
外科大夫一般会对患者做一个辅助化疗(PCR)来控制癌症发展,后续再对辅助化疗失败(或者说还尚存癌细胞)的进行开刀手术。这里可以利用影像组学将PCR缓解的患者挑出来,这部分病人即可免除开刀手术,只需要密切观察和随访即可。文章就发表CCR,现IF10.1分