有序链表转换二叉搜索树-java解法
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
给定的有序链表: [-10, -3, 0, 5, 9],
一个可能的答案是:[0, -3, 9, -10, null, 5], 它可以表示下面这个高度平衡二叉搜索树:
0 / \ -3 9 / /
-10 5
Given the head of a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
解法:
将给定的有序链表转换为二叉搜索树的第一步是确定根节点。由于我们需要构造出平衡的二叉树,因此比较直观的想法是让根节点左子树中的节点个数与右子树中的节点个数尽可能接近。这样一来,左右子树的高度也会非常接近,可以达到高度差绝对值不超过 11 的题目要求。
如何找出这样的一个根节点呢?我们可以找出链表元素的中位数作为根节点的值。
这里对于中位数的定义为:如果链表中的元素个数为奇数,那么唯一的中间值为中位数;如果元素个数为偶数,那么唯二的中间值都可以作为中位数,而不是常规定义中二者的平均值。
根据中位数的性质,链表中小于中位数的元素个数与大于中位数的元素个数要么相等,要么相差 11。此时,小于中位数的元素组成了左子树,大于中位数的元素组成了右子树,它们分别对应着有序链表中连续的一段。在这之后,我们使用分治的思想,继续递归地对左右子树进行构造,找出对应的中位数作为根节点,以此类推。
代码:
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
if(head == null ){
return null;
}
if(head.next == null){
return new TreeNode(head.val);
}
//快慢指针,找到中间的节点
ListNode p = head;
ListNode q = head;
ListNode pre = null;
while(q != null && q.next != null){
pre = p;
p = p.next;
q = q.next.next;
}
pre.next = null;
//左右两边 断开
TreeNode root = new TreeNode(p.val);
//将中间节点作为根根节点
root.left = sortedListToBST(head);
//递归,找对应的左右节点
root.right = sortedListToBST(p.next);
return root;.
//返回根节点
}
}