用户行为分析揭露恶意内部人员!

内部攻击是窃取敏数据的比较成功的方法,也是最难发现的网络攻击。这是因为这些攻击是使用合法的凭据,有计算机账户和访问特权进行的。简单的外部防御在检测内部攻击这块有些乏力。

191010揭露.png

企业和IT管理员正在转向用户行为分析(UBA)以应对来自意外、恶意和受感染用户的内部攻击。

UBA利用人工智能(AI)来跟踪可能造成损害的异常用户行为,通过分析一段时间内的用户行为模式并创建每个用户活动的基准来完成的,当UBA解决方案检测到用户正常行为的偏离时,它将实时提醒管理员。

使用UBA对SIEM解决方案进行补充,可以添加新的分析功能,从而增强您现有的威胁检测范围,并更好地使您避免潜在的漏洞。我们的白皮书(通过用户行为分析简化威胁检测)详细讨论了传统安全工具在阻止内部或恶意威胁方面的不足,以及UBA如何成为各种规模组织的理想解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值