将字典转换为DataFrame并进行频次统计

首先将一个字典转化为DataFrame,然后以DataFrame中的列进行频次统计。

代码如下:

import pandas as pd

a={'one':['A','A','B','C','C','A','B','B','A','A'],
   'tao':['B','B','C','C','A','A','C','B','C','A'],
   'three':['C','B','A','A','B','B','B','A','C','D']}

b=pd.DataFrame(a)
b.describe()

b是转换后DataFrame,显示如表格:

  one tao three
0 A B C
1 A B B
2 B C A
3 C C A
4 C A B
5 A A B
6 B C B
7 B B A
8 A C C
9 A A D


频次统计如表格:

  one tao three
count 10 10 10
unique 3 3 4
top A C B
freq 5 4 4
其中count是总共变量数量,unique是每列有几个变量,top是频次最高的那个变量,freq是频次最高变量出现的频次。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值