PRML || 2. 概率分布 | 2.1 离散型概率分布

本文是Bishop《模式识别与机器学习》读书笔记,主要探讨了离散型概率分布,包括伯努利分布、二项分布和Beta分布。伯努利分布描述了二元随机变量的概率分布,其最大似然估计为样本均值。二项分布是多次伯努利实验的结果分布,其参数的后验分布为Beta分布,体现了贝叶斯推断的思想。Beta分布作为二项分布的共轭先验,能够有效处理小数据集的过拟合问题。
摘要由CSDN通过智能技术生成

ch2.1 常见的离散型概率分布


概率论在解决模式识别问题中起着重要作用。本章介绍的分布及性质为后续的复杂模型理解提供了应用基础,也会在简单模型的上下文中讨论一些关键的统计概念,例如贝叶斯推断。

分布的一个重要作用是密度估计,即假设数据点是独立且相同分布的,在给定有限集 { x 1 , ⋯   , x N } \{\mathbf{x}_1,\cdots, \mathbf{x}_N\}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值