高维数据建模 || 9. Lasso回归中的ADMM方法

本文探讨了在Lasso回归中如何利用交替方向乘子法(ADMM)进行优化。首先介绍了基于最小二乘法的多元线性回归,并指出其目标是找到向量x,使得其元素尽可能多为零。接着,通过引入增广拉格朗日函数,详细阐述了ADMM的迭代过程,包括两个子问题的求解步骤:x的更新和z的软阈值操作。最后,给出了ADMM算法的流程。
摘要由CSDN通过智能技术生成
【资源说明】 基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip 基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip 基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip 基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip基于matlab实现ADMM算法在分布式调度的应用源码+详细代码注释.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值