直角坐标系的坐标转换

一、平移

        直角坐标系的平移转换很简单。假设在坐标系XOY下,原点在O(0,0)处,此时坐标系原点想要平移到原坐标系的A(x0,y0)处。那么在原来XOY坐标下的点(x,y),在新的XAY坐标系下的坐标即为:(x-x0,y-y0)

二、绕原点旋转

        当坐标系绕原点旋转θ角度时,在原来XOY坐标系下的点(x1,y1),在旋转后的坐标系的坐标记为(x2,y2),则其关系为:

其推导方式可以用下图中公式,将θ角度的正弦余弦展开带入即可约去求得。 

三、平移+旋转

        平移旋转可以看成是两者的组合。如图,可以是黑色坐标系首先平移到蓝色(x0,y0)的坐标系,蓝色坐标系再旋转θ角度到红色的坐标系。因此有:

四、同一坐标系下的坐标转换

        在一个公共坐标系下有已知坐标和航向的A(xa,ya)、P(xp,yp)两点,A点朝向为φa,P点朝向为轨迹切向,大小为φp。两者都有以朝向方向为X轴的直角坐标系,简称为A坐标系和P坐标系。

那么A的位置在P坐标系下,横纵坐标与航向误差角度的计算公式为:

也就是说,变成了求原本在XOY坐标系下的A点的坐标,现在在P坐标系下的坐标位置。记住这里不是cos(φp-φa)和sin(φp-φa),因为φp是相对于XOY旋转的角度。航向角度以左正右负计算。若P点是距离A点最近的点,也即转化为轨迹的S-L坐标系下A的位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值