已知z域和s域的关系为 𝑧=𝑒^(𝑠𝑇) ,但是这种方式会造成频谱的混叠。重写上面这个式子
泰勒展开:
在原点sT/2=0处对上式进行泰勒展开,并砍去高阶项,很容易得到下式。现在我们得到了z与s关系的另一种表达式,当然T越小越好。
由于分子和分母和s是线性关系,所以这个式子就叫双线性变换。分子一个线性变换,分母一个线性变换。
接下来看看这个s与z的关系是如何消除频谱的混叠的:
令 𝑧=𝑒^(𝑗𝑤),代入式子可得:
可以得到
观察式子6,重写这个式子得到下式。上式中 𝜔 是数字角频率, Ω 是模拟角频率
可以画出下图:
可以看出所有的模拟角频率都被压缩到+- 𝜋 之内,但是却依然能保持单值对应。虽然消灭了频谱混叠,但是由于这个出发点是在原点进行泰勒展开做近似的,最后的频谱会存在一定的失真。
参考链接:
(1)https://zhuanlan.zhihu.com/p/265965580
(2)https://wenku.baidu.com/view/808f8a878bd63186bcebbc88.html