双线性变换法简介

        已知z域和s域的关系为 𝑧=𝑒^(𝑠𝑇) ,但是这种方式会造成频谱的混叠。重写上面这个式子

泰勒展开:

在原点sT/2=0处对上式进行泰勒展开,并砍去高阶项,很容易得到下式。现在我们得到了z与s关系的另一种表达式,当然T越小越好。

  

由于分子和分母和s是线性关系,所以这个式子就叫双线性变换。分子一个线性变换,分母一个线性变换。

接下来看看这个s与z的关系是如何消除频谱的混叠的:

令 𝑧=𝑒^(𝑗𝑤),代入式子可得:

可以得到

观察式子6,重写这个式子得到下式。上式中 𝜔 是数字角频率, Ω 是模拟角频率

可以画出下图:

可以看出所有的模拟角频率都被压缩到+- 𝜋 之内,但是却依然能保持单值对应。虽然消灭了频谱混叠,但是由于这个出发点是在原点进行泰勒展开做近似的,最后的频谱会存在一定的失真。

参考链接:

(1)https://zhuanlan.zhihu.com/p/265965580

(2)https://wenku.baidu.com/view/808f8a878bd63186bcebbc88.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值