【Agent】OpenManus-Flow组件详细分析

1. Flow架构概述

OpenManus 的Flow组件实现了一个灵活的工作流管理系统,主要用于协调多个智能体的协作,以完成复杂任务。Flow组件的核心是基于计划的执行模型,它将任务分解为一系列步骤,然后逐步执行这些步骤,直到任务完成。

2. 核心组件设计

2.1 BaseFlow (基础Flow)

设计特点

  • 使用 Pydantic 模型实现,支持数据验证和序列化
  • 支持多智能体管理,可以灵活配置主要智能体和执行者
  • 提供了智能体访问和管理的接口
  • 定义了 execute 抽象方法,要求子类实现

关键属性

  • agents: 智能体字典,存储Flow中可用的所有智能体
  • tools: 可选的工具列表
  • primary_agent_key: 主要智能体的键名

初始化逻辑

  • 支持多种智能体输入方式:单个智能体、智能体列表或智能体字典
  • 自动设置主要智能体,如果未指定则使用第一个智能体

关键方法

  • primary_agent: 属性方法,获取主要智能体
  • get_agent: 根据键名获取特定智能体
  • add_agent: 添加新智能体到Flow中
  • execute: 抽象方法,执行Flow

2.2 FlowType (Flow类型)

设计特点

  • 使用枚举类定义可用的Flow类型
  • 目前只有 PLANNING 类型,但设计支持扩展

2.3 PlanStepStatus (计划步骤状态)

设计特点

  • 使用枚举类定义计划步骤的可能状态
  • 提供了状态管理和显示的辅助方法

状态类型

  • NOT_STARTED: 未开始
  • IN_PROGRESS: 进行中
  • COMPLETED: 已完成
  • BLOCKED: 已阻塞

辅助方法

  • get_all_statuses: 获取所有可能的状态值
  • get_active_statuses: 获取活动状态值(未开始或进行中)
  • get_status_marks: 获取状态标记符号映射

2.4 FlowFactory (Flow工厂)

设计特点

  • 实现了工厂模式,用于创建不同类型的Flow实例
  • 支持根据Flow类型和智能体配置创建相应的Flow

关键方法

  • create_flow: 静态方法,根据Flow类型和智能体创建Flow实例

3. PlanningFlow (规划Flow)

3.1 设计特点

  • 继承自 BaseFlow,实现了基于计划的任务执行Flow
  • 使用 PlanningTool 管理计划的创建、更新和执行
  • 支持多智能体协作,可以根据步骤类型选择合适的执行者
  • 实现了计划的自动创建、步骤执行和状态跟踪
  • 提供了计划可视化和总结功能

3.2 关键属性

  • llm: 语言模型实例,用于计划创建和总结
  • planning_tool: 计划工具实例,用于管理计划
  • executor_keys: 执行者智能体的键名列表
  • active_plan_id: 当前活动计划的 ID
  • current_step_index: 当前执行步骤的索引

3.3 初始化逻辑

  • 处理执行者配置和计划 ID
  • 初始化计划工具
  • 如果未指定执行者,则使用所有可用智能体作为执行者

3.4 执行Flow

主要执行Flow (execute 方法):

  1. 验证主要智能体是否可用
  2. 如果提供了输入文本,创建初始计划
  3. 循环执行以下步骤,直到计划完成或无更多步骤:
    • 获取当前要执行的步骤信息
    • 如果没有更多步骤,完成计划并退出
    • 根据步骤类型选择合适的执行者
    • 执行当前步骤
    • 检查执行者状态,如果为 FINISHED 则退出
  4. 返回执行结果

计划创建Flow (_create_initial_plan 方法):

  1. 创建系统消息和用户消息
  2. 使用 LLM 和 PlanningTool 创建计划
  3. 处理工具调用结果
  4. 如果创建失败,创建默认计划

步骤执行Flow (_execute_step 方法):

  1. 准备计划状态和步骤文本
  2. 创建步骤提示
  3. 使用选定的执行者执行步骤
  4. 标记步骤为已完成
  5. 返回执行结果

计划完成Flow (_finalize_plan 方法):

  1. 获取最终计划文本
  2. 使用 LLM 创建计划总结
  3. 如果 LLM 总结失败,尝试使用智能体创建总结
  4. 返回计划完成信息和总结

3.5 步骤管理

步骤获取 (_get_current_step_info 方法):

  1. 验证计划是否存在
  2. 从计划工具存储中获取计划数据
  3. 查找第一个未完成的步骤
  4. 提取步骤类型(如果有)
  5. 将步骤标记为进行中
  6. 返回步骤索引和信息

步骤完成 (_mark_step_completed 方法):

  1. 使用计划工具将当前步骤标记为已完成
  2. 如果工具调用失败,直接更新计划工具存储中的步骤状态

3.6 计划可视化

计划文本获取 (_get_plan_text 方法):

  1. 尝试使用计划工具获取计划文本
  2. 如果失败,从存储中直接生成计划文本

计划文本生成 (_generate_plan_text_from_storage 方法):

  1. 从计划工具存储中获取计划数据
  2. 确保步骤状态和注释与步骤数量匹配
  3. 计算各状态的步骤数量和完成进度
  4. 生成格式化的计划文本,包括标题、进度和步骤列表
  5. 使用状态标记显示每个步骤的状态

4. PlanningTool (计划工具)

4.1 设计特点

  • 实现了计划的创建、更新、查询和管理功能
  • 使用内存存储管理计划数据
  • 支持多个计划的并行管理
  • 提供了计划步骤状态的跟踪和更新

4.2 关键属性

  • plans: 字典,存储所有计划数据
  • _current_plan_id: 当前活动计划的 ID

4.3 命令支持

  • create: 创建新计划
  • update: 更新现有计划
  • list: 列出所有计划
  • get: 获取特定计划
  • set_active: 设置活动计划
  • mark_step: 更新步骤状态
  • delete: 删除计划

5. 调用Flow分析

5.1 Flow创建和初始化

# 创建智能体
agents = {"manus": Manus()}

# 使用工厂创建Flow
flow = FlowFactory.create_flow(
    flow_type=FlowType.PLANNING,
    agents=agents,
)
  1. 首先创建所需的智能体实例
  2. 使用 FlowFactory 创建特定类型的Flow
  3. Flow初始化过程中设置智能体和其他配置

5.2 Flow执行

# 执行Flow
result = await flow.execute(prompt)
  1. 调用Flow的 execute 方法,传入用户输入
  2. Flow内部创建初始计划
  3. 循环执行计划步骤,直到完成
  4. 返回执行结果

5.3 计划创建

# 内部计划创建Flow
await self._create_initial_plan(input_text)
  1. 使用 LLM 和 PlanningTool 创建初始计划
  2. 设置计划 ID 和标题
  3. 定义计划步骤

5.4 步骤执行

# 获取当前步骤
self.current_step_index, step_info = await self._get_current_step_info()

# 选择执行者
executor = self.get_executor(step_type)

# 执行步骤
step_result = await self._execute_step(executor, step_info)
  1. 获取当前未完成的步骤
  2. 根据步骤类型选择合适的执行者
  3. 使用执行者执行步骤
  4. 标记步骤为已完成

5.5 计划完成

# 完成计划
result += await self._finalize_plan()
  1. 获取最终计划状态
  2. 使用 LLM 创建总结
  3. 返回计划完成信息

6. 设计模式应用

6.1 工厂模式

  • FlowFactory 实现了工厂模式,用于创建不同类型的Flow

6.2 策略模式

  • 不同的Flow实现不同的执行策略
  • 可以根据需要选择不同的Flow类型

6.3 命令模式

  • PlanningTool 实现了命令模式,支持不同的计划操作命令

6.4 观察者模式

  • 计划状态变化和事件处理

6.5 模板方法模式

  • BaseFlow 定义了算法骨架
  • PlanningFlow 实现特定步骤

7. 扩展性设计

7.1 Flow扩展

  • 可以通过继承 BaseFlow 创建新的Flow类型
  • 只需实现 execute 方法

7.2 智能体集成

  • Flow支持多种智能体集成方式
  • 可以根据步骤类型选择不同的执行者

7.3 计划工具扩展

  • PlanningTool 支持添加新的命令和功能
  • 可以扩展计划数据结构和状态类型

8. 错误处理机制

8.1 异常捕获

  • 在主要方法中捕获异常
  • 记录错误并提供友好的错误消息

8.2 超时处理

  • 在 run_flow.py 中实现了执行超时处理
  • 防止长时间运行的任务阻塞系统

8.3 状态恢复

  • 在计划工具操作失败时提供直接更新存储的备选方案
  • 确保计划状态的一致性

9. Flow使用示例

9.1 基本使用

# 创建智能体和Flow
agents = {"manus": Manus()}
flow = FlowFactory.create_flow(flow_type=FlowType.PLANNING, agents=agents)

# 执行Flow
result = await flow.execute("创建一个网站爬虫")

9.2 多智能体协作

# 创建多个智能体
agents = {
    "planner": PlanningAgent(),
    "coder": SWEAgent(),
    "researcher": Manus()
}

# 创建Flow并指定执行者
flow = FlowFactory.create_flow(
    flow_type=FlowType.PLANNING,
    agents=agents,
    primary_agent_key="planner",
    executors=["coder", "researcher"]
)

# 执行Flow
result = await flow.execute("分析市场数据并创建可视化")

OpenManus 的Flow组件通过分离计划创建、步骤执行和状态管理的职责,它能够支持复杂任务的分解和执行,同时保持代码的可维护性和可扩展性。核心的基于计划的执行模型和多智能体协作机制使Flow能够处理各种复杂任务,从而实现更高级的自动化和问题解决能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值