PCA降维求特征值的原因

我看了几篇文章,知道了PCA降维思路,但始终不能理解,为什么通过求其特征值,然后去掉较小的特征值,再根据特征值求出特征向量最终能达到降维的目的。 如果你有相同的困惑,看下面的内容一定会有帮助。

看之前你需要了解协方差矩阵。了解特征值的求解方式。

PCA做的事情:

去噪声和冗余

噪声: 样本中某个主要维度A,能够代表原始数据,但是由于维度A与其他维度有联系,而其他维度又给我们造成干扰,此时可以通过PCA处理,使维度A与其他维度的相关性减弱。
冗余:冗余就是有一些没有用的维度,这些维度在所有样本上变化不明显,即通过它对区分不同样本不起作用。就可以通过PCA去掉这些维度。

PCA降维过程
首先我们拿到样本数据求出其协方差矩阵(网上很多,不具体写了),协方差矩阵的对角线上是方差,非对角线元素是协方差。我们应使协方差尽可能小(因为协方差代表维度之间的相关性,去噪声就是使其相关性变的尽可能小),应使方差尽可能大(因为方差大说明该维度在不同样本中的变化大,能体现出样本的特点)。要达到这个目的实际上就是将协方差矩阵的非对角线元素(协方差)全变为0(协方差为0意味着维度之间没有联系)。即转换成一个对角矩阵,此时该矩阵的对角线上的元素被称为特征值(也是各个维度上的新的方差)。对角线上较小的新方差就是去掉该去掉的维度,根据特征值求出来的其对应的特征向量就是该样本的新的坐标系。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值