分数坐标(晶体)

In crystallography, a fractional coordinate system (crystal coordinate system) is a coordinate system in which basis vectors used to the describe the space are the lattice vectors of a crystal (periodic) pattern. The selection of an origin and a basis define a unit cell, a parallelotope (i.e., generalization of a parallelogram (2D) or parallelepiped (3D) in higher dimensions) defined by the lattice basis vectors a 1 , a 2 , … , a d {\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\dots ,\mathbf {a} _{d}} a1,a2,,adwhere 𝑑 is the dimension of the space. These basis vectors are described by lattice parameters (lattice constants) consisting of the lengths of the lattice basis vectors a 1 , a 2 , … , a d {\displaystyle a_{1},a_{2},\dots ,a_{d}} a1,a2,,ad and the angles between them α 1 , α 2 , … , α d ( d − 1 ) 2 {\displaystyle \alpha _{1},\alpha _{2},\dots ,\alpha _{\frac {d(d-1)}{2}}} α1,α2,,α2d(d1)

Most cases in crystallography involve two- or three-dimensional space. In the three-dimensional case, the basis vectors a 1 , a 2 , a 3 {\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}} a1,a2,a3 are commonly displayed as a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } a,b,c with their lengths denoted by a , b , c {\displaystyle a,b,c} a,b,c, respectively, and the angles denoted by α , β , γ {\displaystyle \alpha ,\beta ,\gamma } α,β,γ, where conventionally, α {\displaystyle \alpha } α is the angle between b {\displaystyle \mathbf {b} } b and c {\displaystyle \mathbf {c} } c, β {\displaystyle \beta } β is the angle between c {\displaystyle \mathbf {c} } c and 𝑎 and 𝛾 is the angle between 𝑎 and 𝑏.
在这里插入图片描述
由三个晶格基向量定义的三维晶胞(以虚线表示)
a 1 , a 2 , a 3 \mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3} a1,a2,a3在笛卡尔坐标系中显示。

通常,为了描述晶体内的坐标,我们使用所谓的 分数坐标。分数坐标使用晶格向量作为基础,而绝对坐标则使用欧几里得空间作为基础。这使得描述两个仅在晶格值上不同的相似结构变得更容易。除非另有说明,否则任何列出的坐标都是分数坐标。

晶体结构

晶体结构被定义为晶体内原子的空间分布,通常以无限晶体图案的概念建模。无限晶体图案是指与晶体相对应的无限 3D 周期阵列,其中阵列周期的长度不能任意小。使晶体结构与自身重合的几何偏移称为晶体结构的对称平移(平移)。与此偏移相关的矢量称为平移矢量 t 由于晶体结构具有周期性,因此平移向量的所有整数线性组合本身也是平移向量
t = c 1 t 1 + c 2 t 2  where  c 1 , c 2 ∈ Z {\displaystyle \mathbf {t} =c_{1}\mathbf {t} _{1}+c_{2}\mathbf {t} _{2}{\text{ where }}c_{1},c_{2}\in \mathbb {Z} } t=c1t1+c2t2 where c1,c2Z

CIF 数据

在这里插入图片描述

https://en.wikipedia.org/wiki/Fractional_coordinates

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值