In crystallography, a fractional coordinate system (crystal coordinate system) is a coordinate system in which basis vectors used to the describe the space are the lattice vectors of a crystal (periodic) pattern. The selection of an origin and a basis define a unit cell, a parallelotope (i.e., generalization of a parallelogram (2D) or parallelepiped (3D) in higher dimensions) defined by the lattice basis vectors a 1 , a 2 , … , a d {\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\dots ,\mathbf {a} _{d}} a1,a2,…,adwhere 𝑑 is the dimension of the space. These basis vectors are described by lattice parameters (lattice constants) consisting of the lengths of the lattice basis vectors a 1 , a 2 , … , a d {\displaystyle a_{1},a_{2},\dots ,a_{d}} a1,a2,…,ad and the angles between them α 1 , α 2 , … , α d ( d − 1 ) 2 {\displaystyle \alpha _{1},\alpha _{2},\dots ,\alpha _{\frac {d(d-1)}{2}}} α1,α2,…,α2d(d−1)
Most cases in crystallography involve two- or three-dimensional space. In the three-dimensional case, the basis vectors
a
1
,
a
2
,
a
3
{\displaystyle \mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}}
a1,a2,a3 are commonly displayed as
a
,
b
,
c
{\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} }
a,b,c with their lengths denoted by
a
,
b
,
c
{\displaystyle a,b,c}
a,b,c, respectively, and the angles denoted by
α
,
β
,
γ
{\displaystyle \alpha ,\beta ,\gamma }
α,β,γ, where conventionally,
α
{\displaystyle \alpha }
α is the angle between
b
{\displaystyle \mathbf {b} }
b and
c
{\displaystyle \mathbf {c} }
c,
β
{\displaystyle \beta }
β is the angle between
c
{\displaystyle \mathbf {c} }
c and 𝑎 and 𝛾 is the angle between 𝑎 and 𝑏.
由三个晶格基向量定义的三维晶胞(以虚线表示)
a
1
,
a
2
,
a
3
\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3}
a1,a2,a3在笛卡尔坐标系中显示。
通常,为了描述晶体内的坐标,我们使用所谓的 分数坐标。分数坐标使用晶格向量作为基础,而绝对坐标则使用欧几里得空间作为基础。这使得描述两个仅在晶格值上不同的相似结构变得更容易。除非另有说明,否则任何列出的坐标都是分数坐标。
晶体结构
晶体结构被定义为晶体内原子的空间分布,通常以无限晶体图案的概念建模。无限晶体图案是指与晶体相对应的无限 3D 周期阵列,其中阵列周期的长度不能任意小。使晶体结构与自身重合的几何偏移称为晶体结构的对称平移(平移)。与此偏移相关的矢量称为平移矢量 t 由于晶体结构具有周期性,因此平移向量的所有整数线性组合本身也是平移向量
t
=
c
1
t
1
+
c
2
t
2
where
c
1
,
c
2
∈
Z
{\displaystyle \mathbf {t} =c_{1}\mathbf {t} _{1}+c_{2}\mathbf {t} _{2}{\text{ where }}c_{1},c_{2}\in \mathbb {Z} }
t=c1t1+c2t2 where c1,c2∈Z
CIF 数据
https://en.wikipedia.org/wiki/Fractional_coordinates