分类器算法详解 (机器学习与实战源码)

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]   #获得行数中的数组数量
    diffMat = tile(inX, (dataSetSize,1)) - dataSet   #将数据转换成标准格式,即dataset的格式,再减去dataset的数值
    sqDiffMat = diffMat**2  
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()       #根据距离从小到大排序,argsort()函数返回从小到大距离的索引值列表 
    classCount={}          
    for i in range(k):      #选取前k个最近的样本点
        voteIlabel = labels[sortedDistIndicies[i]]   #选取第i个最近的点的标签
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1   #将标签和频率对应成字典,统计目标点出现在标签中加1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)  #将出现次数由大到小进行排序
    return sortedClassCount[0][0]    #返回出现出现次数中最高频率的标签

 

疑惑:算法是怎么根据距离的大小找到对应的标签的?   距离从小到大排序--距离的索引值从小到大排序--将标签对应索引值--再统计出现的标签次数,出现次数最多的标签就是要找的那个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值