自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 Training Region-based Object Detectors with Online Hard Example Mining 论文笔记

background任务:在目标检测领域提出新的训练方式,提高准确率关键词:Hard Example Mining​Introduction之前的目标检测模型很少从训练方式上做出更改,但是实际上,传统的训练方式是十分低效的,目前实验发现,hard example更利于模型的训练,所以,作者的主要想法是训练过程中,更加注重对hard example的选取,然后用选取的hard example对模型进行训练,提升性能。​传统的训练方式需要平衡前景和背景的比例,需要许多超参数,但是作者的训练方式去除了.

2021-08-03 11:20:22 193

原创 Object detection via a multi-region & semantic segmentation-aware CNN model 论文笔记

background任务:通过对语义特征进行编码,提高定位精度关键词:Multi-Region CNN Model​Introduction之前的目标检测模型,虽然使用了深层特征,但是实际上纯外观特征、不同区域(对象部分)的不同外观、上下文外观、对象边界两侧的联合外观以及语义等信息对于目标的定位也是十分重要,本文的作者的目的就是深度发掘目标区域的不同划分,目标周围的背景等相关因素,形成一个弱监督器,辅助得到更加准确的目标定位。​其次目标检测和语义分割之间的联系也是十分紧密,所以作者希望得到一...

2021-08-02 13:51:02 346

原创 几种数据降维

PCA在使数据降维后得到的新数据的方差最大化,最大程度的保持原始数据的特征以m∗nm*nm∗n的数据降维到m∗km*km∗k(n>k)为例先求n中特征下,每种特征对应的均值: xˉ=∑i=1nxin\bar{x}=\frac{\sum_{i=1}^nx_i}{n}xˉ=n∑i=1n​xi​​得到n个特征的平均值然后计算协方差协方差:cov(X,Y)=∑i=1n(Xi−xˉ)(Yi−Yˉ)n−1cov(X,Y)=\frac{\sum_{i=1}^n .

2021-08-01 11:26:07 382

原创 MultiResolution Attention Extractor for Small Object Detection 论文笔记

background任务:目标检测中对于小目标的识别和检测,提高对小目标的检测精度关键词:MultiResolution Attention Extractor (MRAE)Introduction在一张图片中,小目标的分辨率很低,对于cnn网络,鲁棒性和精准小目标的识别似乎是一种矛盾关系,而且对于目标的检测,需要将目标映射到高维空间中,通过多通道的各个特征的提取,判断目标的种类等分类信息,但低分辨率的高维空间,小目标很可能被当作噪音过滤掉,训练方向或者效果很差。基于目前的问题,论文作者提出了利用.

2021-08-01 11:18:31 407

原创 FCOS_ Fully Convolutional One-Stage Object Detection 论文笔记

background任务:改变目标检测中边框的提供方法,降低计算量关键词: Feature Pyramid , Center-ness,Multi-level Prediction with FPN for FCOS​Introduction以faster rcnn为例, 基于anchor boxes产生预测框,然后做回归任务,但为了增大iou,选择了生成大量的预测框,其中大部分是无效的,过多的无效边框只会增大算力的负担,而且还会影响最终的训练效果,并且预测框的超参数的设置,很大程度上影响最终模型.

2021-08-01 11:14:26 123

原创 特征选择与稀疏学习

特征选择为什么特征选择**1.**可以降低数据的维度,避免维度灾难**2.**除去不相关的特征,降低学习的难度子集搜索与评价基本思路是产生一个“候选子集”,评价它的好坏,基于评价结果产生下一个候选子集,再对其进行评价,直到无法选出更好的子集子集搜索给定的特征集合{a1,a2,...,ad}\lbrace a_1,a_2,...,a_d\rbrace {a1​,a2​,...,ad​},现将每个特征看作一个特征子集,对d个候选单子集进行评价,假定{a2}\lbrace a_2\rbrace{a2.

2021-08-01 11:03:31 193

原创 CornerNet_ Detecting Objects as Paired Keypoints 论文笔记

background任务:利用单一的卷积神经网络对目标检测任务中的目标的左上和右下进行预测关键词:Object Detection,CornerNet​Introduction对于传统的目标检测任务,以faster rcnn为例,基于targets,产生大量的建议区域,虽然经过nms,iou大小比较等方法极大的减少了建议区域,但建议区域的数目依然巨大,而且区域中的积极区域的数目要远小于消极区域的数目,这种不平衡很影响神经网络的训练,而且faster rcnn虽然比一般的一级检测网络的精度要高,但算.

2021-08-01 10:43:35 365

原创 Focal Loss for Dense Object Detection 论文笔记

background任务:寻找二级检测网络准确率高于一级检测网络的原因,并且做出改进,使一级检测网络的精度达到二级水平关键词:Focal Loss​Introduction传统的一级检测网络,精度明显低于二级检测网络,作者通过实验发现,造成精度下降的主要原因是前景类和背景类不均匀导致的,而二级检测网络有对rois有再选择的过程,一定程度上缓解了不平衡因素的影响。比如,如果背景类很多,而且背景类中的大部分属于easy example(比如有百分之九十的概率是背景),传统的交叉熵损失函数: 虽然这.

2021-08-01 10:38:25 146

原创 End-to-End Object Detection with Fully Convolutional Network 论文笔记

background任务:目标检测任务中,去除不可训练的NMS,实现端到端的训练关键词:POTO,3DMFIntroduction传统的目标检测会用到不可训练的NMS,严重阻碍了端到端的训练。之后提出的 Learnable NMS , Soft NMS等,也没有提供有效的端到端的训练策略。DETR将transformer带入到目标检测中,并且去除了NMS,但是对小目标的训练效果较差。​本文基于提出的标签分配和网络结构,去除NMS,提供一个全卷积的端到端的目标检测方式。​Model​整体.

2021-08-01 09:59:09 187

原创 k-means python实现

本文的数据集:number,density,sugercontent1,0.697,0.4602,0.774,0.3763, 0.634,0.2644,0.608,0.3185,0.556,0.2156,0.403,0.2377,0.481,0.1497,0.666,0.0918,0.437,0.2119,0.666,0.091文章的加载路径也是电脑本地的路径,所以应用时注意路径和读取数据的名称的关系import numpy as npimport pandas as pdfr

2021-08-01 09:58:56 102

原创 神经网络 python实现

本文是将mnist的分类测试,神经网络的python实现文章的加载路径也是电脑本地的路径,所以应用时注意路径和读取数据的名称的关系读取mnist数据集,输出结果是一矩阵,每一列为一张图片拉成的向量import structimport osimport numpy as npfrom matplotlib import pyplot as pltclass MNIST(object): ''' MNIST数据集类 ''' def __init__(self,ro

2021-08-01 09:58:47 219

原创 朴素贝叶斯文本分类 python实现

文章的加载路径也是电脑本地的路径,所以应用时注意路径和读取数据的名称的关系应用的是亚马逊美食评论的数据集,因为数据集本身没有好坏划分,所以我自定义了划分标准import numpy as npimport pandas as pdimport nltk加载数据data=pd.read_csv('./相关资料/Reviews.csv')数据预处理class get_good_bad_data(object): ''' 分数为5为good 分数为1为bad '

2021-08-01 09:58:32 257 1

原创 Learning non-maximum suppression 论文笔记

background​任务:通过可学习的NMS,代替传统的NMS。关键词:Learning non-maximum suppression​Introduction传统的NMS基本都是不健全的,阈值的不同,检测的效果也不同,而且不同的场景中的阈值必然不同,但预测时的超参数是固定的,所以传统的NMS很难找到一个合适的阈值,使其达到很好的效果。​本文主要是像通过神经网络来代替NMS,通过一个可训练的网络,来达到健全的效果,能够适应场景的变化,但是本文中的神经网络的缺点就是参数众多,需要大量的实验数.

2021-07-31 19:17:28 972

原创 G-CNN an Iterative Grid Based Object Detector 论文笔记

background任务:取消建议区域的算法,减少盒子的数量,加快速度关键词:G-CNN​Introduction​这是一篇2016年的论文,主要对标fast rcnn,以fast rcnn为例子,需要通过建议,提供上千个建议区域,十分影响检测的速度,而且positive和negative,hard,easy,也会影响模型的准确率。​所以本文作者删除了提案阶段,和减少处理box的数量来提高检测速度。​作者认为,将检测区域的生成,看作是一种寻找过程,初始化的区域需要通过复杂的非线性变化,得到最.

2021-07-31 19:10:58 270

原创 SSD_ Single Shot MultiBox Detector 论文笔记

background任务:使用单一深度神经网络,加速预测速度,保持准确率关键词:The Single Shot Detector (SSD)​Introduction以faster-rcnn为例,虽然准确率很高,但是预测速度很慢,并且训练过程复杂,SSD的提出,主要是基于VGG16,然后对Conv5_3层的feature maps进行卷积运算,生成特征金字塔,对于每层的feature maps,通过将点位映射到原图像中,生成中心点,然后通过选择比例和纵横比,生成建议框。​对于预测,通过对特征金字.

2021-07-31 17:49:10 219

原创 Enhancement of SSD by concatenating_feature maps for object detection 论文笔记

background任务:通过有效的特征映射提高传统SSD的性能关键词:Rainbow concatenation​Introduction传统的SSD的特征金字塔对小目标的检测效果不是很好,而且直接通过层级进行预测,彼此的layers没有信息交互,会降低模型的准确度。​所以作者通过对SSD中的预测层级进行,pooling和反卷积,使各个层级有信息交互,使得模型的准确率上生,但是,检测速率也有一定的下降​Model整体结构Rainbow concatenation主要是通过po.

2021-07-31 17:37:11 125

原创 DSOD_ Learning Deeply Supervised Object Detectors from Scratch 论文笔记

background任务:从0开始训练模型,避免因迁移学习域的不同导致的精度下降,引入densenet的模块,提高精度关键词:Deeply Supervised , densenetIntroduction1)迁移学习虽然能够加快训练速度,通过微调达到不错的效果,但是因imagenet的局限,面临着设计结构有限,不够灵活,而且存在学习偏见,因两者的任务不同,所以优化空间可能不同,在分类任务中能收敛到最优解,但在目标检测任务中可能就是收敛到局部最优解,最后是域的不匹配,微调虽然可以减少差异,但是影响.

2021-07-31 17:34:05 99

原创 FSSD_ Feature Fusion Single Shot Multibox Detector 论文笔记

background任务:利用特征融合,增强SSD系类目标检测的性能关键词:Fusion feature​IntroductionSSD没有将特征融合考虑进去,本文作者通过实验,确定合适的特征融合方式,使得模型的性能得到了提升,但速度只有下降一点点。文章主要是在SSD的基础上,在预测输入的feature maps之前,利用不同层次的特征金字塔,进行了特征融合,得到了语义信息更加完全的feature maps,然后进行边框和分类的任务的执行​论文作者主要将conv3_3, conv4_3, fc.

2021-07-31 17:26:48 369

原创 HyperNet_ Towards Accurate Region Proposal Generation and Joint Object Detection 论文笔记

background任务:结合高层次和低层次的信息,提高对小目标的检测能力,加快检测速度关键词:HyperNet​Introduction在目标检测中,低层次的feature maps位置信息相对较多,定位性较强,但是用于检测的语义信息不够丰富,高层次的feature maps的用于检测的语义信息相对丰富,但是位置信息粗糙,而且,对于小目标的深层的语义信息因之前的对应的区域的分辨率较低,导致语义信息很粗糙,(可能是2*2的feature maps),在检测任务中可能会被忽略掉。​本文作者通过预训.

2021-07-31 17:12:20 172

原创 Cascade R-CNN_ Delving into High Quality Object Detection 论文笔记

background任务:通过调整iou确定positive和negative的比例与proposals的质量的关系,提升模型的效果关键词:Cascade ​Introduction传统的proposals的positive和negative的比例,受到iou的阈值的影响,如果阈值比较低,会导致产生的边框有很多的噪音,产生很多冗杂的边框,如果iou的阈值比较高,会导致positive与negative的比例失衡,导致训练过拟合,而且产生的模型的效果不佳​输入iou与阈值的关系如上图,...

2021-07-31 17:05:26 101

原创 PVANET_ Deep but Lightweight Neural Networks for Real-time Object Detection 论文笔记

background任务:综合利用当时先进的方法,在提高模型的精度的同时,保持快速的检测速度关键词:C.ReLU,Inception,HyperNet,Faster R-CNN with our feature extraction network​Introduction作者在当时的VOC2007的mAP的名次位于第二名,但是计算成本确实第一名的百分之12.3。本文模型的构建的主要想法是综合当时几个先进的模型,利用他们彼此之间的长处,来实现一个更加强大的模型,主要用到了:1)CRelu,利用...

2021-07-31 16:57:22 114

原创 A Unified Multi-scale Deep Convolutional_Neural Network for Fast Object Detection 论文笔记

background任务:缓解因建议区域与检测区域大小不匹配的问题,提高对小目标的准确率关键词: object detection, multi-scale, unified neural network​Introduction摘要传统的目标检测因目标建议区域的大小不同,但是使用相同大小的卷积核,对检测准确率造成了很大的影响。如下图:黄色的边框为建议区域,而检测网络中的用于检测的区域大小和建议区域的大小严重不匹配,会造成检测精度的下降(eg:如faster rcnn中将大小目标均适应性均值.

2021-07-31 16:30:51 312

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除