A Unified Multi-scale Deep Convolutional_Neural Network for Fast Object Detection 论文笔记

background


任务:缓解因建议区域与检测区域大小不匹配的问题,提高对小目标的准确率
关键词: object detection, multi-scale, unified neural network


Introduction

摘要

传统的目标检测因目标建议区域的大小不同,但是使用相同大小的卷积核,对检测准确率造成了很大的影响。
如下图:
在这里插入图片描述

黄色的边框为建议区域,而检测网络中的用于检测的区域大小和建议区域的大小严重不匹配,会造成检测精度的下降(eg:如faster rcnn中将大小目标均适应性均值池化到相同的size,然后进行检测,这样为了网络能够正常进行,但是牺牲了检测网络的准确性,换句话说,这样的网络很难匹配size相差很大的检测任务)。
所以本文作者为了找到建议区域和检测匹配问题的好的解决办法,提出了多尺度的检测方法。主要是低层的网络主要负责小目标的检测,高层网络主要负责大目标的检测,而且在第一层的小目标检测中,应用到了反卷积来提高精度。


传统的几种方法


在这里插入图片描述

(a)主要的想法是将输入的图片resize不同的尺寸,为了得到不同大小的目标的相同的输出feature maps,这种方法虽然精度很高,但是计算开销过于巨大,计算效率很低。
(b)虽然提出了多个分类器,解决了计算过于复杂的问题,但是本身设计的网络参数众多,很难得到好的检测网络。
(c)是综合(a),(b)提出的网络
(d)通过对feature maps进行插值等处理,在精度和速度上确实得到了提升,而且在小目标的检测是性能也得到了提升
(e)是将提案区域转化成输入图片的大小
(f)是faster-rcnn的主要想法,将不同尺寸的feature maps适应性均值池化到相同尺寸(比如22的小目标和200200的大目标pooling到相同尺寸,这样会影响检测网络的训练)
(g)是本文作者的提案


Model

整体结构


在这里插入图片描述

作者的主要想法是在高分辨率的feature maps产生小目标的建议区域,而且训练单独的检测网络。
每层的检测区域产生不同尺度的anchors,每层都有与其对应的检测网络

每层的anchors的大小:

在这里插入图片描述



第一层的反卷积结构
在这里插入图片描述

正负样本划分


每层的anchors是以一定的步长滑动产生的。
在这里插入图片描述

上式式计算提案与ground-truth的max–iou,得到的值大于0.5记为阳性,否则阴性。
但在实际的检测任务中很容易出现阴性远大于阳性的现象,所以作者提出通过一般随机采样,一半自定义的方式产生平衡这种现象。

如选取2n个阴性样本,n个通过随机采样产生,另外n个通过阴性的得分由高到低选取n个(hard negative相比easy negative对网络的训练更好)


Context Embedding


如上图的蓝色区域,将提案区域外的背景区域也加入到检测中去,蓝色的区域边长为提案区域的1.5倍。
采用无填充的额外卷积层来减少模型参数的数量。它有助于压缩冗余上下文和对象信息,而不损失准确性,并确保模型参数的数量大致相同。


Experiments


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Learn from paper

解决了大目标和小目标因检测网络相同而引起的误差,使得网络更加灵活,应对不同size的提案

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值