大模型日报2024-04-23

大模型日报

 

2024-04-23

 

大模型资讯

 

  1. 苹果可能即将发布新一代大型语言模型AI项目

 

  • 摘要: 据报道,苹果公司正在开发一种新的大型语言模型,这是一种先进的人工智能技术。这个项目被视为苹果的下一个重大项目,可能不久后将对外公布。业界对此次大公告的期待已经高涨,预计将揭示苹果在AI领域的最新进展。

 

  1. Meta发布Llama 3大型语言模型:技术大幅进步

 

  • 摘要: Meta最新推出的Llama 3大型语言模型,在词汇量扩展、上下文长度处理等方面实现了显著突破。该模型的进步预示着在自然语言处理领域的技术将更加强大和精准,为未来的应用开发奠定了坚实基础。

 

  1. 2024年WWDC预计发布苹果设备内置大型语言模型AI

 

  • 摘要: 据最新消息,苹果公司可能会在2024年全球开发者大会(WWDC)上揭晓一款设备内置的大型语言模型人工智能。为了在生成式AI等领域赶超其他竞争对手,苹果的下一个重大创新可能是这种强大的本地运算能力的语言模型。

 

  1. 苹果开发设备内置大型语言模型以提升隐私和速度

 

  • 摘要: 据Mark Gurman在其最新的“Power On”通讯中报道,苹果正在开发一种设备内置的大型语言模型(LLM),这一技术将是其新一代生成性AI能力的基石。这意味着用户的数据可以在本地处理,从而增强隐私保护,并可能提升处理速度。

 

  1. 专家警告:语言模型可能产生有害回应

 

  • 摘要: 随着OpenAI的ChatGPT不断推动自动文本生成技术的发展,研究人员提出警告,指出需要采取更多措施来避免语言模型生成有害内容。专家强调,尽管这些模型在文本自动生成方面具有巨大潜力,但同时也存在被滥用的风险,需要制定相应的规范和技术来降低这些风险。

 

  1. 苹果iOS 18将引入离线AI功能,支持iPhone的通用人工智能特性

 

  • 摘要: 苹果公司预计将在iOS 18中为iPhone引入具有通用人工智能(AI)特性的新功能。这些功能将在6月的开发者大会上展示,利用设备上的大型语言模型(LLMs)来提升用户体验,同时支持离线AI能力,增强隐私保护并提升处理速度。

 

  1. 苹果开发本地运行的大型语言模型以增强生成式AI功能

 

  • 摘要: 据彭博社的马克·古尔曼报道,苹果正在开发一款自己的大型语言模型(LLM),该模型能够在设备上直接运行。这一举措旨在提升处理速度并增强用户隐私保护,使得未来的生成式AI功能更为快捷和安全。

 

  1. Meta推出新型AI模型Llama 3并开源

 

  • 摘要: Meta公司最近发布了其最新的人工智能模型Llama 3,并承诺在特定区域通过Meta AI提供高性能和易访问性。这一模型现已开源,旨在推动AI技术的发展和应用。业界专家对此表示关注,并对其性能和潜在影响给出了各自的看法。

 

  1. 苹果正开发自家大型语言模型以支持iPhone上的生成式AI功能

 

  • 摘要: 据最新消息,苹果公司正在开发一款自家的大型语言模型(LLM),旨在为其iPhone设备上的未来生成式人工智能(AI)功能提供动力。这项新技术有望进一步提升苹果设备的智能处理能力,使其更加个性化且功能强大。

 

  1. 游戏理论研究表明AI可演化出自私或合作特性

 

  • 摘要: 日本研究人员通过大规模语言模型(LLM),成功在对话AI中培养出多样化的个性特征。这项研究显示,人工智能能够根据游戏理论演化出更加自私或合作的行为模式,为AI的个性化发展和人机交互提供了新的视角。

 

大模型产品

 

  1. Univi:管理您的ADHD

 

  • 摘要: Univi是一款针对成人ADHD患者的移动应用程序。它提供基于CBT的课程、AI驱动的个性化冥想及ADHD规划工具。今日注册用户可免费使用至2025年5月。

 

  1. Stylar智能设计草图转换

 

  • 摘要: Stylar的AI设计草图工具能将手绘草图转化为高品质产品图像,覆盖鞋类、汽车、家具等,上传即可获得细致的产品图片。

 

  1. Sonnet:自动化会议笔记与CRM

 

  • 摘要: Sonnet是您的全方位AI会议助手,提供会前简报、定制AI笔记和全自动CRM,无需会议机器人即可让您的对话产生更大价值。

 

  1. Hook0: 开源企业级Webhook服务

 

  • 摘要: Hook0为SaaS开发者提供简化的webhook集成方案。通过单一API调用,开发者可确保事件的可靠传递、自动重试和增强的安全性。

 

  1. Radar: 实时新闻通讯赞助信息源

 

  • 摘要: Radar是一款AI驱动的实时数据源,汇集数千份新闻通讯的赞助信息。它通过Zapier和Make.com集成,为出版商提供与其受众相关的独家赞助机会。

 

  1. AllMind AI:个人股市分析师

 

  • 摘要: AllMind AI,您的个人金融分析师,提供集中的实时市场数据和行动洞察。该AI系统大幅缩减研究时间90%,降低成本98%,在各项金融任务中胜过GPT-4、Gemini和Opus。

 

  1. Meta Llama 3 AI聊天体验

 

  • 摘要: Meta推出新一代Llama 3 AI聊天模型。该模型开源免费,供开发者自定义使用。现可在线免费试用体验。

 

  1. 聊天机器人竞技场:找到最佳AI构建器

 

  • 摘要: 「聊天机器人竞技场」是一个比较平台,让您对比各种聊天机器人构建器的功能、价格和性能,帮助您选择最适合您需求的AI聊天机器人构建工具。

 

大模型论文

 

  1. MoVA:多模态视觉专家混合模型

 

  • 摘要: 本文提出了MoVA,一种新的多模态大型语言模型。通过粗细粒度机制,动态选择和融合特定任务的视觉专家,显著提升多模态任务性能。代码和模型将开源。

 

  1. 统一3D场景表示与重建框架

 

  • 摘要: 本文提出Uni3DR^2框架,通过预训练的2D模型和多尺度3D解码器,实现了3D几何与语义感知特征的提取。该框架显著提高了LLMs在3D场景理解和重建的性能。

 

  1. 皮肤病AI的零样本概念生成

 

  • 摘要: 本文探讨了使用基础模型CLIP和大型语言模型(如GPT-3.5)进行微调,以生成符合临床术语的图像描述,提升皮肤病AI的零样本概念分类性能。

 

  1. 样本设计工程:提升LLMs微调效果

 

  • 摘要: 本文提出样本设计工程(SDE)方法,旨在通过优化输入、输出和推理设计,提高大型语言模型(LLMs)微调后的性能。通过领域内外实验,揭示了影响LLMs性能的设计模式,并验证了SDE策略在复杂任务中的优越性。

 

  1. LLM-ADE:适应性数据工程的大型语言模型

 

  • 摘要: 本文介绍了LLM-ADE框架,这是一种针对大型语言模型的连续预训练新方法。通过动态调整架构,如选择性冻结和扩展区块,以适应特定数据集,提升模型的适应性和保留既有知识。在TinyLlama模型上的测试显示,该方法在保持性能的同时,避免了传统持续训练的缺点。

 

  1. 增强随机基线的上下文学习

 

  • 摘要: 本文提出了一种针对小数据集和频繁验证集使用情况下的强化随机基线方法,通过评估多个随机分类器的最大预期准确度,来更准确地衡量语言模型的上下文学习分类性能。

 

  1. Groma:多模态语言模型的视觉定位

 

  • 摘要: Groma是一种多模态大型语言模型,具备精细的视觉感知能力。它能够通过区域级的视觉标记化机制进行图片理解,提升了文本与图像的关联性。

 

  1. 对话系统评估新思路:用户反馈影响

 

  • 摘要: 研究探讨了考虑用户后续话语反馈与否对任务导向型对话系统评估的影响。通过众包工作者和大型语言模型作为评注员,评估系统回应的相关性、有用性、趣味性和解释质量,发现用户反馈显著影响评分结果。

 

  1. FineRec:细粒度序列推荐研究

 

  • 摘要: 本文提出了FineRec框架,利用大型语言模型从评论中提取属性-意见对,通过构建用户-意见-项目图和多样性感知的卷积操作,实现了细粒度的用户偏好和项目特征学习,有效提升了序列推荐的性能。

 

  1. 多模态语言模型的反事实推理能力

 

  • 摘要: 本文提出了一个新的反事实多模态推理基准(CFMM),用于评估多模态大型语言模型(MLLMs)的反事实推理能力。研究发现,现有MLLMs在CFMM上的表现与VQA基准相比,仍有较大提升空间。

 

大模型开源项目

 

  1. Meta Llama 3官方GitHub项目

 

  • 摘要: Meta Llama 3项目在GitHub上正式发布,这是一款使用Python语言编写的AI项目。它的设计和功能吸引了开发者社区的广泛关注,成为Github上的热门趋势。

 

  1. AI项目:智能分配考场工具

 

  • 摘要: moest-np是一个Github上热门的AI项目,旨在使用Python语言开发脚本,自动为学生分配考试中心。该项目通过智能算法简化了考场分配流程,提高了效率。

 

  1. 开源WebUI项目:面向LLMs的Ollama

 

  • 摘要: open-webui是一个面向大型语言模型(LLMs)的用户友好Web界面项目,前称Ollama WebUI,采用Svelte语言编写,旨在提供更佳的用户交互体验。

 

  1. GitHub热门AI项目:Meta-Llama

 

  • 摘要: Meta-Llama是一个流行的GitHub AI项目,提供CodeLlama模型的推理代码。该项目使用Python语言编写,便于开发者进行代码模型推理和实验。

 

  1. ollama:多种大型语言模型

 

  • 摘要: ollama项目让你快速启动和运行Llama 3、Mistral、Gemma等多种大型语言模型。该项目使用Go语言编写。

 

  1. CrewAI: 协同智能角色扮演框架

 

  • 摘要: CrewAI是一个由joaomdmoura开发的项目,旨在创建能够协同工作的自主AI代理。该框架使用Python编写,能够处理复杂任务,提升代理间的协作智能。

 

  1. C++实现的LLM推理项目

 

  • 摘要: ggerganov是一个用C++编写的Github热门AI项目,专注于在C/C++环境中实现大型语言模型(LLM)的推理功能。

 

  1. mendableai:网站转换成LLM Markdown

 

  • 摘要: mendableai是一个热门的AI项目,使用TypeScript编写。它能够将整个网站内容转换为适用于大型语言模型(LLM)的Markdown格式,便于进一步处理和分析。

 

  1. hiyouga:百余LLMs高效微调统一

 

  • 摘要: hiyouga项目旨在提供一个统一的平台,用于高效地微调超过100种大型语言模型(LLMs)。该项目使用Python语言编写,便于AI研究者和开发者进行模型调优。

 

  1. 开源离线聊天机器人Jan项目

 

  • 摘要: Jan是一个开源项目,旨在提供一个100%离线运行的ChatGPT替代品。支持多种引擎,如llama.cpp和TensorRT-LLM,使用TypeScript编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值