基于Matlab的1/3倍频程计算

倍频程定义倍频程理解

倍频程表示的是相应倍频程带内的功率(能量)之和,其详细理论课参考其他文章,在计算倍频程之前需要将时域信号进行傅里叶变化,本文基于功率谱密度进行倍频程计算。

计算自功率谱密度

计算一维数组x的自功率谱密度:

n=length(x);
if mod(n,2)==0
	%偶数
else 
	n=n-1;
end
windows=hann(n);
x1=detrend(x); %去除线性趋势项
x1=x1(1:n).*windows; %时域数据加汉宁窗
y=fft(x1,n);
f=(0:(n-1)/2)/n*fs; %根据对称性取频率一半,fs为采样周期
P1=y(1:n/2);
P1(2:end-1)=2*P1(2:end-1); %得到单边复数频谱
P1=P1/n; %单边复数频谱的真实值
AP=P1.*conj(P1); %计算自功率谱
APL=AP/(fs/n); %自功率谱密度
APL=APL*1.6333; %加窗造成的衰减,需要乘以汉宁窗恢复系数。

计算倍频程

ajrms=zeros(1,23);
for i=1:23
	fdnum=find(f>=param.fid(i));
	%param.fid为各倍频程带的下限频率
	funum=find(f<param.fiu(i));
	%param.fid为各倍频程带的上限频率
	api=APL(fdnum(1):funum(end));
	aptrapz=trapz(fs/n,api);
	ajrms(1,i)=aptrapz^0.5;
end
%ajrms即为各倍频程带的倍频程

倍频程的计算和噪声倍频程或许存在出入,本案例参照GB 4970汽车平顺性的倍频程计算方法计算。

基于Matlab1/3倍频程海洋环境噪声功率谱分析,首先需要了解噪声功率谱的概念。噪声功率谱是指在不同频率下的噪声功率密度,它可以帮助我们了解噪声在不同频率范围内的分布规律。 在进行基于Matlab1/3倍频程海洋环境噪声功率谱分析时,我们需要进行以下步骤: 1. 数据采集:首先需要采集到海洋环境中的噪声信号。可以使用专业的海洋环境噪声传感器进行采集,或者利用声纳等设备获取到海洋噪声数据。 2. 信号预处理:对采集到的噪声信号进行预处理,包括去除杂音、滤波等操作。可以使用Matlab提供的信号处理工具箱进行处理。 3. 信号分帧:将预处理后的信号进行分帧处理,将长时间的信号分成若干个短时序列。 4. 快速傅里叶变换(FFT):对每个短时序列进行快速傅里叶变换,将时域信号转换为频域信号。 5. 噪声功率谱计算:根据傅里叶变换的结果,计算每个频率点的功率谱密度,得到噪声功率谱。 6. 分析与展示:对噪声功率谱进行分析,并利用Matlab绘制图表,展示噪声在不同频率范围内的功率密度分布情况。可以进一步计算1/3倍频程内的噪声功率谱,并进行图表绘制,方便进一步分析。 通过以上步骤,我们可以基于Matlab实现1/3倍频程海洋环境噪声功率谱分析。这样的分析可以帮助我们了解海洋环境中的噪声特性,对于海洋工程、海洋生物学等领域的研究具有重要的意义。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值