第一章 函数与极限
第一节 映射与函数
一、映射
f从x到y的映射:,x是原像,y是像。函数中x是自变量,y是因变量。
映射三要素:
集合X,定义域
集合Y,值域,教材上用的是
对应法则
满射:Y全部用完
单射:x和y一 一对应,但Y不一定用完。
一 一映射(双射):满射+单射。
映射,算子,泛函,变换,函数(实数集X→实数集Y)。
逆映射:
定义域:
值域:
mathmatica求反函数,优先使用方法2
方法1:
方法2:
复合映射:
设有两个映射:,
,教材上用的是
,满足结合律,不满足交换律
二、函数
绝对值函数、符号函数、取整函数、狄利克雷函数
函数的几种特性:
有界性、单调性、奇偶性、周期性、凹凸性
初等函数:幂指对,三反三
双曲正弦、双曲余弦、双曲正切
反双曲正弦、反双曲余弦、反双曲正切
,求定义域和值域
mathematica 8.0不支持,暂无输出结果。
第二节 数列的极限
一、数论极限的定义
二、收敛数列的性质
1.极限唯一。
2.收敛必有界,反之不一定成立。
3.收敛数列的保号性:
4.原数列收敛,那么子数列也收敛,反之不一定成立。
第三节 函数的极限
一、函数极限的定义
自变量趋于有限值时函数的极限:
自变量趋于无穷大时函数的极限:
二、函数极限的性质,跟数列极限类似
1.极限唯一性
2.局部有界性
3.局部保号性
4.函数收敛,其数列也收敛
第四节 无穷小和无穷大
自然智慧即可。
第五节 极限运算法则
自然智慧即可。
第六节 极限存在准则 两个重要极限
极限存在准则:
1.夹逼准则
2.单调有界数列必有极限。单调有界是充分条件。
柯西极限存在准则,也叫柯西申敛原理。
数列收敛的充分必要条件是:对于任意给定的正数
,存在正整数
,使得当
,
,有
两个重要极限:
mathmatica求极限:
第七章 无穷小的比较
高阶无穷小
低阶无穷小
同阶无穷小、等价无穷小
k阶无穷小
求极限的时候,,
不能用等价无穷小替换。
,
可以用等价无穷小替换。
第八章 函数的连续性与间断点
一、函数的连续性
左右极限相等并且极限等于函数值,那就是连续。
二、函数的间断点
第一类间断点(有极限):可去间断点、跳跃间断点。
第二类间断点(没有极限):无穷间断点(y趋于无穷)、振荡间断点。
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
连续,定义域是
。两端点的值是
和
1.有界性
值域在一个闭区间里。
2.零点定理与介值定理
零点定理:和
异号,即使
,则在开区间
内至少有一点
,使
。
介值定理:,
,对于
与
之间的任意一个数
,在开区间
内至少有一点
,使
。
3.一致连续性
定义:设函数在区间I上有定义,如果对于任意给定的正数
,总存在正数
,使得对于区间I上的任意两点
,
,当
时,有
,那么称函数
在区间I上一致连续。
一致连续性定理:如果函数在闭区间
上连续,那么它在该区间上一致连续。
第二章 导数与微分
第一节 导数概念
一、引例
瞬时变化率
切线
二、导数的定义
,
三、导数的切线意义
过点切线方程:
过点法线方程:
四、函数可导性与连续性的关系
连续不一定可导。可导必连续。
第二节 函数的求导法则
一、函数的和、差、积、商的求导法则
1.
2.
3.
二、反函数的求导法则
或
三、复合函数的求导法则
,
,y对x求导:
或
四、基本求导法则与导数公式
暂无
mathematica求导
第三节 高阶导数
1.
2.莱布尼茨公式:
mathematica求二阶导
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率
一、隐函数的导数
,对x求导,y是对x的中间函数:
mathematica对隐函数求导
二、由参数方程所确定的函数的导数
参数方程:
求导法则:
mathematica对参数方程求导:
三、相关变化率
无
第五节 函数的微分
一、微分的定义
二、微分的几何意义
三、基本初等函数的微分公式与微分运算法则
跟求导一样
四、微分在近似计算中的应用
,其中
、
、
计算方便
第三章 微分中值定理与导数的应用
第一节 微分中值定理
一、罗尔定理
导数为0的点被称为驻点(稳定点、临界点)。
费马引理:设函数在点
的某邻域
内有定义,并且在
处可导,如果对任意的
,有
(或
),
那么。
罗尔定理:如果函数满足
1.在闭区间上连续;
2.在开区间内可导;
3.在区间端点处的函数值相等,即,
那么在内至少有一点
,使得
。
二、拉格朗日中值定理
如果函数满足
1.在闭区间上连续;
2.在开区间内可导;
那么在内至少有一点
,是等式
成立。
这个定理也叫有限增量定理,微分中值定理。
有限增量公式:
三、柯西中值定理
如果函数及
满足
1.在闭区间上连续;
2.在开区间内可导;
3.在任一,
,
成立。
第二节 洛必达法则
或
第三节 泰勒公式
泰勒公式:
佩亚诺余项:
拉格朗日余项:,其中
是
与
之间的某个值。
麦克劳林公式,当时:
初等函数的麦克劳林公式
暂无
mathematica计算麦克劳林公式:
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
五个步骤
第七节 曲率
一、弧微分
弧微分公式:
二、曲率及其计算公式
,
是倾斜角,
是弧段长度。
对于圆:
参数方程:
三、曲率圆与曲率半径
曲率圆:在曲线上点M做法线,在凹侧 作为圆心,这个元会过
点。圆心是曲率中心,半径
是曲率半径。
四、曲率中心的计算公式 渐曲线和渐伸线
曲线C上的点
曲率中心的坐标:
点在曲线C上移动,这是渐伸线。
曲率中心的坐标会根据点
在曲线C上移动,这是渐曲线。
第八节 方程的近似解
一、二分法
二、切线法
三、割线法
割线法也叫弦截法。
第四章 不定积分
第一节 不定积分的概念
一、原函数与不定积分的概念
原函数存在定理:连续函数一定有原函数。
mathematica求函数的不定积分:
二、基本积分表
表后期补上
三、不定积分的性质
第二节 换元积分法
一、第一类换元积分法
二、第二类换元积分法
,需要求反函数
第三节 分部积分法
或者
第四节 有理函数的积分
有理函数:,其中
和
都是多项式。
是二次时,令
,求出两个根。
如果两个根不一样,可拆分母。
如果两个根一样,令换元。
如果不存在,分母转换成。
二、可化为有理函数的积分举例
第五节 积分表的使用
第五章 定积分
第一节 定积分得概念与性质
一、定积分问题举例
二、定积分的定义
三、定积分的近似计算
四、定积分的性质
定积分中值定理:如果函数在积分区间
上连续,那么在
上至少存在一个点
,使下式成立:
,其中
第二节 微积分基本公式
三、牛顿-莱布尼茨公式
mathematica求定积分:
第三节 定积分的换元法和分部积分法
一、定积分的换元法
,注意积分的上限和下限:
二、定积分的分部积分法
第四节 反常积分
一、无穷限的反常积分
定义域包含无穷大
二、无界函数的反常积分
也叫瑕积分。值域无穷大或者震荡。
第五节 反常积分的审敛法
函数
一、无穷限反常积分的审敛法
绝对收敛:如果收敛,那么
也收敛。
二、无界函数的反常积分的审敛法
三、
函数
定义:,其中
递推公式:,其中
余元公式::,其中
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
一、平面图形的面积
直角坐标
极坐标:扇形面积
二、体积
旋转体
平行截面
三、平面曲线的弧长
暂无
第三节 定积分在物理学上的应用
第七章 微分方程
第一节 微分方程的基本概念
含导数的方程就是微分方程
第二节 可分离变量的微分方程
,如果一阶方程能写成这个样子,就是可分离变量的微分方程。
第三节 齐次方程
一、齐次方程
,如果一阶微分方程能化成这种形式,就是齐次方程。
二、可化为齐次的方程
,如果
是齐次的。否则不是齐次的,使用待定系数法可以转化成齐次的。
第四节 一阶线性微分方程
一、线性方程
一阶线性微分方程:。如果
,是齐次,否则不是齐次。
如果是齐次时:
二、伯努利方程
伯努利方程:,其中
通过变量代换,转成线性的。
第五节 可降阶的高阶微分方程
一、
型的微分方程
二、
型的微分方程
三、
型的微分方程
第六节 高阶线性微分方程
二、线性微分方程的解的结构
二阶齐次线性方程:
线性相关、线性无关
第七节 常系数齐次线性微分方程
第八节 常系数非齐次线性微分方程
第九节 欧拉方程
欧拉方程:,其中
到
为常数
第十节 常系数线性微分方程组解法举例
latex公式1latex公式2