第一章 函数与极限

第一节 映射与函数

一、映射

f从x到y的映射:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学,x是原像,y是像。函数中x是自变量,y是因变量。

映射三要素:
集合X,定义域高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_02
集合Y,值域高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_03,教材上用的是高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_04
对应法则高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_05

满射:Y全部用完
单射:x和y一 一对应,但Y不一定用完。
一 一映射(双射):满射+单射。

映射,算子,泛函,变换,函数(实数集X→实数集Y)。

逆映射:
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_07
高等数学(同济大学数学科学学院)第8版上册(更新中)_android_08
定义域:高等数学(同济大学数学科学学院)第8版上册(更新中)_java_09
值域:高等数学(同济大学数学科学学院)第8版上册(更新中)_java_10

mathmatica求反函数,优先使用方法2
方法1:

ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;

(*使用 InverseFunction*)
inverse = InverseFunction[f]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_11

方法2:

ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;

(*求反函数*)
inverse = x /. Solve[y == f[x], x][[1]]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_12

复合映射:
设有两个映射:高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_13
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_14高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_15,教材上用的是高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_04,满足结合律,不满足交换律

二、函数

绝对值函数、符号函数、取整函数、狄利克雷函数

函数的几种特性:
有界性、单调性、奇偶性、周期性、凹凸性

初等函数:幂指对,三反三
双曲正弦、双曲余弦、双曲正切
反双曲正弦、反双曲余弦、反双曲正切

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_17,求定义域和值域

(*求定义域,需要程序员构造不等式*)
domain = Reduce[x + 2 >= 0, x, Reals];
domain
  • 1.
  • 2.
  • 3.

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_18

(*求值域*)
y = Sqrt[x + 2] + 1;
range = FunctionRange[y, x, y];
range
  • 1.
  • 2.
  • 3.
  • 4.

mathematica 8.0不支持,暂无输出结果。

第二节 数列的极限

一、数论极限的定义

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_19

二、收敛数列的性质

1.极限唯一。
2.收敛必有界,反之不一定成立。
3.收敛数列的保号性:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_20
4.原数列收敛,那么子数列也收敛,反之不一定成立。

第三节 函数的极限

一、函数极限的定义

自变量趋于有限值时函数的极限:
高等数学(同济大学数学科学学院)第8版上册(更新中)_java_21

自变量趋于无穷大时函数的极限:
高等数学(同济大学数学科学学院)第8版上册(更新中)_java_22

二、函数极限的性质,跟数列极限类似

1.极限唯一性
2.局部有界性
3.局部保号性
4.函数收敛,其数列也收敛

第四节 无穷小和无穷大

自然智慧即可。

第五节 极限运算法则

自然智慧即可。

第六节 极限存在准则 两个重要极限

极限存在准则:
1.夹逼准则
2.单调有界数列必有极限。单调有界是充分条件。
柯西极限存在准则,也叫柯西申敛原理。
数列高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_23收敛的充分必要条件是:对于任意给定的正数 高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_24,存在正整数高等数学(同济大学数学科学学院)第8版上册(更新中)_android_25,使得当高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_26高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_27,有高等数学(同济大学数学科学学院)第8版上册(更新中)_java_28

两个重要极限:
高等数学(同济大学数学科学学院)第8版上册(更新中)_java_29
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_30

mathmatica求极限:

Limit[(1 + 1/x)^x, x -> Infinity]
  • 1.

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_31

第七章 无穷小的比较

高阶无穷小
低阶无穷小
同阶无穷小、等价无穷小
k阶无穷小

求极限的时候,高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_32高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33不能用等价无穷小替换。高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_34高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33可以用等价无穷小替换。

第八章 函数的连续性与间断点

一、函数的连续性

左右极限相等并且极限等于函数值,那就是连续。

二、函数的间断点

第一类间断点(有极限):可去间断点、跳跃间断点。
第二类间断点(没有极限):无穷间断点(y趋于无穷)、振荡间断点。

第九节 连续函数的运算与初等函数的连续性

第十节 闭区间上连续函数的性质

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33连续,定义域是高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37。两端点的值是高等数学(同济大学数学科学学院)第8版上册(更新中)_android_38高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_39
1.有界性
值域在一个闭区间里。
2.零点定理与介值定理
零点定理:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_40高等数学(同济大学数学科学学院)第8版上册(更新中)_android_41异号,即使高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_42,则在开区间高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内至少有一点高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_44,使高等数学(同济大学数学科学学院)第8版上册(更新中)_android_45
介值定理:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_38高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_39,对于高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_48高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_49之间的任意一个数高等数学(同济大学数学科学学院)第8版上册(更新中)_android_50,在开区间高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内至少有一点高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_44,使高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_53
3.一致连续性
定义:设函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33在区间I上有定义,如果对于任意给定的正数高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_24,总存在正数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_56,使得对于区间I上的任意两点高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_57,高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_58,当高等数学(同济大学数学科学学院)第8版上册(更新中)_android_59 时,有高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_60,那么称函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33在区间I上一致连续。
一致连续性定理:如果函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33在闭区间高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上连续,那么它在该区间上一致连续。

第二章 导数与微分

第一节 导数概念

一、引例

瞬时变化率
切线

二、导数的定义

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_64高等数学(同济大学数学科学学院)第8版上册(更新中)_java_65

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_66
高等数学(同济大学数学科学学院)第8版上册(更新中)_android_67

三、导数的切线意义

过点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_68切线方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_java_69

过点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_68法线方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_71

四、函数可导性与连续性的关系

连续不一定可导。可导必连续。

第二节 函数的求导法则

一、函数的和、差、积、商的求导法则

1.高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_72

2.高等数学(同济大学数学科学学院)第8版上册(更新中)_android_73

3.高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_74

二、反函数的求导法则

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_75高等数学(同济大学数学科学学院)第8版上册(更新中)_java_76

三、复合函数的求导法则

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_77高等数学(同济大学数学科学学院)第8版上册(更新中)_java_78,y对x求导:
高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_79高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_80

四、基本求导法则与导数公式

暂无

mathematica求导

ClearAll["Global`*"];
f[x_] := x^2 + 3*x + 5;
derivative = D[f[x], x]
  • 1.
  • 2.
  • 3.

高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_81

第三节 高阶导数

1.高等数学(同济大学数学科学学院)第8版上册(更新中)_android_82

2.莱布尼茨公式:
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_83

mathematica求二阶导

ClearAll["Global`*"];
h[x_] := Sin[x];
secondDerivative = D[h[x], {x, 2}]  (* 二阶导数 *)
  • 1.
  • 2.
  • 3.

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_84

第四节 隐函数及由参数方程所确定的函数的导数 相关变化率

一、隐函数的导数

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_85,对x求导,y是对x的中间函数:高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_86

mathematica对隐函数求导

ClearAll["Global`*"];
(*定义隐函数*)F[x_, y_] := x + y^3 - 1

(*进行隐式求导*)
implicitDerivative = 
 D[F[x, y], x] + D[F[x, y], y]*Derivative[1][y][x] == 0

(*解出 y'=dy/dx*)
solution = Solve[implicitDerivative, Derivative[1][y][x]]

(*提取 dy/dx*)
dy_dx = Derivative[1][y][x] /. solution // Simplify
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_87

二、由参数方程所确定的函数的导数

参数方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_88

求导法则:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_89

mathematica对参数方程求导:

ClearAll["Global`*"];
x[t_] := t^2;
y[t_] := t^3;
dxdt = D[x[t], t];  (*对 x(t) 求导*)
dydt = D[y[t], t];(*对 y(t) 求导*)
slope = dydt/dxdt
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_90

三、相关变化率

第五节 函数的微分

一、微分的定义
二、微分的几何意义
三、基本初等函数的微分公式与微分运算法则

跟求导一样

四、微分在近似计算中的应用

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_91,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_92高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_93高等数学(同济大学数学科学学院)第8版上册(更新中)_java_94计算方便

第三章 微分中值定理与导数的应用

第一节 微分中值定理

一、罗尔定理

导数为0的点被称为驻点(稳定点、临界点)。

费马引理:设函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33在点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_96的某邻域高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_97内有定义,并且在高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_96处可导,如果对任意的高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_99,有
高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_100 (或高等数学(同济大学数学科学学院)第8版上册(更新中)_java_101),
那么高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_102

罗尔定理:如果函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33满足
1.在闭区间高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上连续;
2.在开区间高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内可导;
3.在区间端点处的函数值相等,即高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_106,
那么在高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内至少有一点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_108,使得高等数学(同济大学数学科学学院)第8版上册(更新中)_android_109

二、拉格朗日中值定理

如果函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33满足
1.在闭区间高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上连续;
2.在开区间高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内可导;
那么在高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内至少有一点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_108,是等式
高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_115
成立。

这个定理也叫有限增量定理,微分中值定理。

有限增量公式:高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_116

三、柯西中值定理

如果函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_118满足
1.在闭区间高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上连续;
2.在开区间高等数学(同济大学数学科学学院)第8版上册(更新中)_android_43内可导;
3.在任一高等数学(同济大学数学科学学院)第8版上册(更新中)_android_121高等数学(同济大学数学科学学院)第8版上册(更新中)_android_122,
高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_123
成立。

第二节 洛必达法则

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_124高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_125

第三节 泰勒公式

泰勒公式:高等数学(同济大学数学科学学院)第8版上册(更新中)_java_126

佩亚诺余项:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_127

拉格朗日余项:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_128,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_129高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_96高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_131之间的某个值。

麦克劳林公式,当高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_132时:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_133

初等函数的麦克劳林公式
暂无

mathematica计算麦克劳林公式:

ClearAll["Global`*"];
f[x_] := Sin[x ];                   (*定义函数*)
maclaurinSeries = Series[f[x], {x, 0, 5}]  (*计算麦克劳林级数*)
  • 1.
  • 2.
  • 3.

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_134

第四节 函数的单调性与曲线的凹凸性

第五节 函数的极值与最大值最小值

第六节 函数图形的描绘

五个步骤

第七节 曲率

一、弧微分

弧微分公式:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_135

二、曲率及其计算公式

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_136高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_137是倾斜角,高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_138是弧段长度。

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_139

对于圆:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_140

参数方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_88

高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_142

三、曲率圆与曲率半径

曲率圆:在曲线上点M做法线,在凹侧 高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_143 作为圆心,这个元会过高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_144点。圆心是曲率中心,半径高等数学(同济大学数学科学学院)第8版上册(更新中)_android_145是曲率半径。

四、曲率中心的计算公式 渐曲线和渐伸线

曲线C上的点高等数学(同济大学数学科学学院)第8版上册(更新中)_java_146
曲率中心高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_147的坐标:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_148

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_146在曲线C上移动,这是渐伸线。
曲率中心高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_147的坐标会根据点高等数学(同济大学数学科学学院)第8版上册(更新中)_java_146在曲线C上移动,这是渐曲线。

第八节 方程的近似解

一、二分法
二、切线法

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_152

三、割线法

割线法也叫弦截法。
高等数学(同济大学数学科学学院)第8版上册(更新中)_android_153

第四章 不定积分

第一节 不定积分的概念

一、原函数与不定积分的概念

原函数存在定理:连续函数一定有原函数。

mathematica求函数的不定积分:

ClearAll["Global`*"];
f[x_] := x^2;
indefiniteIntegralWithConstant = 
 Integrate[f[x], x] + C   (*C是常数,代表积分常数*)
  • 1.
  • 2.
  • 3.
  • 4.

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_154

二、基本积分表

表后期补上

三、不定积分的性质

第二节 换元积分法

一、第一类换元积分法

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_155
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_156

二、第二类换元积分法

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_157,需要求反函数高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_158
高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_159

第三节 分部积分法

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_160
或者
高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_161

第四节 有理函数的积分

有理函数:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_162,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_163高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_164都是多项式。

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_164是二次时,令高等数学(同济大学数学科学学院)第8版上册(更新中)_java_166,求出两个根。
如果两个根不一样,可拆分母。
如果两个根一样,令高等数学(同济大学数学科学学院)第8版上册(更新中)_java_167换元。
如果不存在,分母转换成高等数学(同济大学数学科学学院)第8版上册(更新中)_java_168

二、可化为有理函数的积分举例

第五节 积分表的使用

第五章 定积分

第一节 定积分得概念与性质

一、定积分问题举例
二、定积分的定义
三、定积分的近似计算
四、定积分的性质

定积分中值定理:如果函数高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33在积分区间高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上连续,那么在高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_37上至少存在一个点高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_129,使下式成立:
高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_173 ,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_174

第二节 微积分基本公式

三、牛顿-莱布尼茨公式

高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_175

mathematica求定积分:

ClearAll["Global`*"];
f[x_] := x^2;
Integrate[f[x], {x, 0, 2}]
  • 1.
  • 2.
  • 3.

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_176

第三节 定积分的换元法和分部积分法

一、定积分的换元法

高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_177,注意积分的上限和下限:
高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_178

二、定积分的分部积分法

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_179

第四节 反常积分

一、无穷限的反常积分

定义域包含无穷大

二、无界函数的反常积分

也叫瑕积分。值域无穷大或者震荡。

第五节 反常积分的审敛法 高等数学(同济大学数学科学学院)第8版上册(更新中)_java_180函数

一、无穷限反常积分的审敛法

绝对收敛:如果高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_181收敛,那么高等数学(同济大学数学科学学院)第8版上册(更新中)_java_33也收敛。

二、无界函数的反常积分的审敛法
三、高等数学(同济大学数学科学学院)第8版上册(更新中)_java_180函数

定义:高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_184,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_185

递推公式:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_186,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_185

余元公式::高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_188,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_189

高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_190

第六章 定积分的应用

第一节 定积分的元素法

第二节 定积分在几何学上的应用

一、平面图形的面积

直角坐标

极坐标:扇形面积

二、体积

旋转体
平行截面

三、平面曲线的弧长

暂无

第三节 定积分在物理学上的应用

第七章 微分方程

第一节 微分方程的基本概念

含导数的方程就是微分方程

第二节 可分离变量的微分方程

高等数学(同济大学数学科学学院)第8版上册(更新中)_java_191,如果一阶方程能写成这个样子,就是可分离变量的微分方程。

第三节 齐次方程

一、齐次方程

高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_192,如果一阶微分方程能化成这种形式,就是齐次方程。

二、可化为齐次的方程

高等数学(同济大学数学科学学院)第8版上册(更新中)_android_193,如果高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_194是齐次的。否则不是齐次的,使用待定系数法可以转化成齐次的。

第四节 一阶线性微分方程

一、线性方程

一阶线性微分方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_java_195。如果高等数学(同济大学数学科学学院)第8版上册(更新中)_java_196,是齐次,否则不是齐次。

如果是齐次时:高等数学(同济大学数学科学学院)第8版上册(更新中)_开发语言_197

二、伯努利方程

伯努利方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_198,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_199

通过变量代换,转成线性的。

第五节 可降阶的高阶微分方程

一、高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_200型的微分方程
二、高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_201型的微分方程
三、高等数学(同济大学数学科学学院)第8版上册(更新中)_高等数学_202型的微分方程

第六节 高阶线性微分方程

二、线性微分方程的解的结构

二阶齐次线性方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_203

线性相关、线性无关

第七节 常系数齐次线性微分方程

第八节 常系数非齐次线性微分方程

第九节 欧拉方程

欧拉方程:高等数学(同济大学数学科学学院)第8版上册(更新中)_android_204,其中高等数学(同济大学数学科学学院)第8版上册(更新中)_数学_205高等数学(同济大学数学科学学院)第8版上册(更新中)_android_206为常数

第十节 常系数线性微分方程组解法举例

latex公式1latex公式2