做的项目到了第二个阶段,从单纯的写代码到需要对算法硬件加速。本人也是第一次接触HLS和SDSOC,记录一下小白的学习心得,可能有不准确的地方,见谅。
简单介绍:
- 系统:ubuntu16.04.4
- 平台:zcu102
- 软件:SDx/SDSOC-v2018.3
- 代码内容:图像处理
- 文章内容:xfopencv库、opencv库的使用,如何使用SDSOC加速算法
1.概述
1.1关于xfopencv问题
问题1:什么是xfopencv库?
回答:
①处理图像的时候都用opencv,但是xfopencv已经根据相关语法对opencv中某些函数针对硬件设备进行了加速和优化,直接调用即可。
②xfopencv发布于2018年年度,命名空间为xf::,输入矩阵为xf::Mat,其目的是取代原来的hls::库。
③随着技术的进步,xfopencv已经逐渐淘汰,最高版本仅支持到vivado_hls-v2019.2.
使用详情:请登陆Xilinx官网查看文档UG1233
下载详情:请登录Github官网搜索“xfopencv”
问题2:xfopencv的处理流程是?
回答:
//1.使用cv::Mat来读取图像,这个过程是从sd卡向DRAM读取图片的过程 //2.将cv::Mat图像拷贝到xf::Mat,初始化该函数需要<图像长宽>、<像素的数据类型>、<每个时钟处理像素数> //3.调用xfopencv的内置函数,这里需要使用xf::Mat类型,该过程是处理过程 //4.从xf::Mat拷贝到cv::Mat,该过程是从DRAM向sd卡写入图片的过程
1.2关于SDSOC问题
问题1:SDSOC如何加速?
回答:SDSOC主要面向软件编程人员,大概率不需要懂硬件的知识(如果有更好),但你需要懂得你手中的板卡处理上限是什么?
其处理流程为://1.写好C/C++代码,并找出计算密集的函数/模块(后续将进行加速) //2.使用HLS语法对函数内部/函数接口进行优化 ①函数内部用于循环的展开/并行; ②函数的接口用于数据的传输,尤其是图像数据从PS到PL的传输需要着重优化 //3.根据仿真结果的处理表现,重复优化上述过程
对于SDSOC这个工具的使用来说,最重要的一步骤就是硬件加速,对应着在项目界面(project explore)中添加要加速的硬件函数(Haradware Funcion),引出了下面的问题
问题2:已知SDSOC编译指令为sds++,编译工具对应板卡的系统编译工具,其编译过程是一个交叉编译的过程。在对硬件函数进行编译的时候有什么需要注意的事项?
回答:
需要注意三点:
①不使用bool类型的数组
②不对顶层硬件函数的接口使用hls::stream
③不对顶层硬件函数进行接口优化,但可以指定生成接口//创建AXI接口 #pragma SDS data zero_copy(): Use to generate a shared memory interface //创建FIFO接口 #pragma SDS data access_pattern(argument:SEQUENTIAL)
查看例程<mmultadd.h>:
带<#pragma SDS>类指令在头文件中出现,目的是以声明的形式创建函数传输端口;
带<#pragma HLS>类指令在函数体内出现,目的是向计算密集函数内添加基于HLS工具的硬件加速语句。
- 头文件中,声明了函数<mmult()>和函数<madd()>的数据传输端口形式为FIFO,FIFO可以理解为顺序读取。
- 如果不使用#pragma SDS指令来制定端口的话,则会使用默认端口形式RAM,RAM可以理解为随机读取。
- 随机读取对于某些特定的处理任务产生影响,因此请指定适合处理任务的数据传输端口
#ifndef _MMULTADD_H_ #define _MMULTADD_H_ #define N 32 /** * Design principles to achieve best performance * * 1. Declare secquential access to stream data into accelerators via a hardware FIFO * interface. Otherwise, the default RAM interface requires all data to arrive * before starting HLS accelerator */ #pragma SDS data access_pattern(A:SEQUENTIAL, B:SEQUENTIAL, C:SEQUENTIAL) void mmult (float A[N*N], float B[N*N], float C[N*N]); #pragma SDS data access_pattern(A:SEQUENTIAL, B:SEQUENTIAL, C:SEQUENTIAL) void madd(float A[N*N], float B[N*N], float C[N*N]); #endif /* _MMULTADD_H_ */
查看<mmult.cpp>,其中带<#>的语句就是向计算密集函数内添加基于HLS工具的硬件加速语句:
`#include <stdio.h> #include <stdlib.h> #include "mmultadd.h" /** * * Design principles to achieve II = 1 * 1. Stream data into local RAM for inputs (multiple access required) * 2. Partition local RAMs into N/2 sub-arrays for fully parallel access (dual-port read) * 3. Pipeline the dot-product loop, to fully unroll it * 4. Separate multiply-accumulate in inner loop to force two FP operators * */ void mmult (float A[N*N], float B[N*N], float C[N*N]) { float Abuf[N][N], Bbuf[N][N]; #pragma HLS array_partition variable=Abuf block factor=16 dim=2 #pragma HLS array_partition variable=Bbuf block factor=16 dim=1 for(int i=0; i<N; i++) { for(int j=0; j<N; j++) { #pragma HLS PIPELINE Abuf[i][j] = A[i * N + j]; Bbuf[i][j] = B[i * N + j]; } } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { #pragma HLS PIPELINE float result = 0; for (int k = 0; k < N; k++) { float term = Abuf[i][k] * Bbuf[k][j]; result += term; } C[i * N + j] = result; } } }