给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:输入: [2,2,1,1,1,2,2]
输出: 2
方法一:哈希表记录次数
- 使用map来存储每个元素以及出现的次数。对于哈希映射中的每个键值对,键表示一个元素,值表示该元素出现的次数。 用一个循环遍历数组nums 并将数组中的每个元素加入哈希映射中。
- 在这之后,我们遍历哈希映射中的所有键值对,返回值最大的键。我们同样也可以在遍历数组nums 时候使用打擂台的方法,维护最大的值,这样省去了最后对哈希映射的遍历。
var majorityElement = function(nums) {
let map = new Map();
for(let num of nums){
if(!map.has(num)){
map.set(num,1);
}else{
map.set(num,map.get(num) + 1);
}
}
let max = nums.length/2;
for(let i of nums){
if(map.get(i) > max) return i;
}
};
复杂度分析
- 时间复杂度:O(n),其中 n 是数组 nums 的长度。我们遍历数组 nums 一次,对于 nums中的每一个元素,将其插入哈希表都只需要常数时间。如果在遍历时没有维护最大值,在遍历结束后还需要对哈希表进行遍历,因为哈希表中占用的空间为O(n)(可参考下文的空间复杂度分析),那么遍历的时间不会超过 O(n)。因此总时间复杂度为O(n)。
- 空间复杂度:O(n)。哈希表最多包含n−⌊ 2/n⌋ 个键值对,所以占用的空间为O(n)。这是因为任意一个长度为 n 的数组最多只能包含n 个不同的值,但题中保证 nums 一定有一个众数,会占用(最少)⌊ 2/n⌋+1 个数字。因此最多有n−(⌊ 2/n⌋+1)个不同的其他数字,所以最多有n−⌊ 2/n ⌋ 个不同的元素。
方法二:排序
因为题目说明总是存在众数,所以如果将数组 nums 中的所有元素按照单调递增或单调递减的顺序排序,那么下标为⌊ 2/n⌋ 的元素(下标从 0 开始)一定是众数。
var majorityElement = function(nums) {
nums.sort((a,b) => a-b);
return nums[Math.floor(nums.length/2)];
};
复杂度分析
- 时间复杂度:O(nlogn)。将数组排序的时间复杂度为O(nlogn)。
- 空间复杂度:O(logn)。如果使用语言自带的排序算法,需要使用O(logn) 的栈空间。如果自己编写堆排序,则只需要使用 O(1)的额外空间。
方法三:投票算法,消除
投票算法的原理是通过不断消除不同元素直到没有不同元素,剩下的元素就是我们要找的元素。
- max初始记录众数为nums[0],用一个count来记录当前众数累加的个数,初始化为1。
- 从1~nums.length-1遍历数组,如果和当前max一样,count继续累加,不同则消除一个,即count减一。
- 当count为0时,说明前面的元素均两两不同消除掉了,所以设置当前nums[i]为众数继续判断。最后剩下的一定是众数。
var majorityElement = function(nums) {
let count = 1;
let majority = nums[0];
for(let i = 1; i < nums.length; i++) {
if (count === 0) {
majority = nums[i];
}
if (nums[i] === majority) {
count ++;
} else {
count --;
}
}
return majority;
};
复杂度分析
- 时间复杂度:O(n),其中n为数组长度
- 空间复杂度:O(1)