快速排序 python 代码实现

原理:

快速排序(Quicksort)是对冒泡排序的一种改进。

快速排序由C. A. R. Hoare在1960年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

   快速排序:是给基准数据找其正确索引位置的过程.
   假设最开始的基准数为数组第一个元素,则首先用一个临时变量去存储基准数,即tmp;然后分别从数组的两端扫描数组,设两个指示标志:low指向起始位置,high指向末尾.

首先确定一个基准数:例如下图的基准数一般都是设置第一个数,基准数tmp=49 ,基准数在与剩下的n-1的部分进行,从最后一个数比较,若基准数小于进行交换,否者大于或者等于基准数不进行交换。此时将基准数与倒数第二个数进行比较27小于49,27和49进行交换。然后基准数49与第二数进行比较,若基准数=49大于第二个数38不交换,再与第三个数比较49<65 ,进行交换,以此类推,如下图

 

动图:

 

 使用python 代码实现:

def quick_sort(data):
    """quick_sort"""
    if len(data) >= 2:
        mid = data[len(data)//2]
        left,right = [], []
        data.remove(mid)
        for num in data:
            if num >= mid:
                right.append(num)
            else:
                left.append(num)
        return quick_sort(left) + [mid] + quick_sort(right)
    else:
        return data
a = [2,3,4,1,45,6,6,7,8,7,9,10,18,20,30,12]

结果:

print(quick_sort(a))
[1, 2, 3, 4, 6, 6, 7, 7, 8, 9, 10, 12, 18, 20, 30, 45]

使用JAVA代码实现:

public class QuickSort {
//    //这是一个非常重要的排序方法(快速排序)

    public static int getMiddle(int array[],int left,int right){
        int key = array[left];
        while(left<right){
            while(array[right]>=key && left<right){
                right--;
            }
            array[left] = array[right];
            while(array[left]<=key && left<right){
                left++;
            }
            array[right]=array[left];
        }
        array[left] = key;
        return left;
    }
    public static void quickSort(int array[],int left,int right){
        if(left>right){
            return;
        }
        int middle = getMiddle(array, left,right);
        quickSort(array,left,middle-1);
        quickSort(array,middle+1,right);
    }
    public static void main(String[] args){
        int num[] ={2,3,4,1,45,6,6,7,8,7,9,10,18,20,30,12};
        quickSort(num,0,num.length-1);
        for(int n:num){
            System.out.print(" "+n);
        }
    }
}

小结:

时间复杂度:

最好情况(待排序列接近无序)时间复杂度为O(nlog2n)

最坏情况(待排序列接近有序)时间复杂度为O(n2)

平均时间复杂度为O(nlog2n)。

 

 

 

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值