861. 翻转矩阵后的得分

给定一个二维矩阵,元素值为0或1,每次操作可以选择一行或一列进行翻转,将所有0变为1,1变为0。计算经过任意次翻转后,矩阵每一行作为二进制数的和的最大值。例如,对于输入[[0,0,1,1],[1,0,1,0],[1,1,0,0]],最优得分可达39。解题策略涉及贪心算法,确保第一列全为1,其他列1的数量过半。" 108117037,9105569,使用动态规划解决LeetCode 5. 最长回文子串,"['动态规划', '字符串算法', 'LeetCode', '算法题解析']
摘要由CSDN通过智能技术生成

861. 翻转矩阵后的得分

有一个二维矩阵 A 其中每个元素的值为 0 或 1 。

移动是指选择任一行或列,并转换该行或列中的每一个值:将所有 0 都更改为 1,将所有 1 都更改为 0。

在做出任意次数的移动后,将该矩阵的每一行都按照二进制数来解释,矩阵的得分就是这些数字的总和。

返回尽可能高的分数。

 

示例:

输入:[[0,0,1,1],[1,0,1,0],[1,1,0,0]]
输出:39
解释:
转换为 [[1,1,1,1],[1,0,0,1],[1,1,1,1]]
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
 

提示:

1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j] 是 0 或 1


基本思路:贪心算法,基本策略如下:

  • 要保证第一列所有元素都是1,否则,翻转改行
  • 要保证其他列中,元素1占总数的一半及其以上,否则,翻转该列 
    int matrixScore(vector<vector<int>>& A) {
        int n=A.size();
        int m&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值