AI-相关概念
weijie.zwj
这个作者很懒,什么都没留下…
展开
-
LLM基础概念:模型训练
神经网络模型可以认为是一个非常复杂的数学公式,模型本质有一系列矩阵参数构成。所谓训练,就是给这些参数分配了合适的值。LLM输入是一段文本,输出也是一段文本,模型训练就是学习输入和输出的映射关系y=f(x)原创 2024-10-01 09:00:00 · 241 阅读 · 0 评论 -
langchain入门合集
1.langchain简介与入门2. langchain的Prompt模版3. 使用链构建可组合流水线4. 使用LangChain的LLM对话记忆5.检索增强6. AI智能体7. 定制化工具8. 具有长记忆的智能体9. Langchain的流式输出10. RAG多维查询11. LCEL:Langchain表达式语言1. prompt2. token3. embedding4. vector database5. RAG原创 2024-10-08 09:59:15 · 403 阅读 · 0 评论 -
LLM基础概念:RAG
在大语言模型时代,RAG指的是在回答问题或生成文本时,先从大规模文档库中检索相关信息,然后利用这些检索到的信息来生成响应或文本,从而提高预测的质量。RAG已被证明能显著提高回答的准确性,减少模型产生的幻觉,尤其是在知识密集型任务中。原创 2024-09-29 09:49:56 · 464 阅读 · 0 评论 -
LLM基础概念:Vector DataBase
向量数据库是存储大量向量并允许高效执行相似度搜索的数据库(例如,通过余弦相似度)的数据库。这种类型的数据库在与大数据和机器学习相结合的场景中非常有用。向量数据库可以在大量(通常是高纬度)向量中快速找到与查询向量最接近的向量,而无需进行暴力搜索。向量数据库的关键性能指标包括召回率、准确率和检索效率,这些都会影响你选择哪种向量库或索引。什么是向量数据库,如何选择向量数据库----索引的选择(召回率和准确率,检索效率)。原创 2024-09-28 15:46:18 · 275 阅读 · 0 评论 -
LLM基础概念:Embedding
embedding在机器学习和自然语言处理中,主要是将词汇、句子、段落甚至整个文档转换为实数向量的过程。这种转换过程允许模型在进行训练和推理过程中,能够理解和处理语言数据。这些向量能够捕捉单词语义上的相似性,例如词义相近的单词在嵌入空间中的向量会更接近。原创 2024-09-27 09:15:14 · 632 阅读 · 0 评论 -
LLM基础概念:Token
在机器学习和深度学习领域中,词元分析器也是必不可少的一步,它能够将文本数据转化为数学模型所需要的向量或矩阵形式,更方便进行后续的算法和模型训练。每一个token都对应一个向量,当输入模型的token数量增加时,模型需要处理的数据量也会相应增加,这对计算资源(如内存和计算能力)的需求也会增大。当我们说模型消耗的token数时,通常是指在一次计算(比如一次训练步骤中或是一次推理过程中)模型处理的token总量(包括input和output)。token是用于自然语言处理的词的片段。原创 2024-09-26 09:50:53 · 769 阅读 · 0 评论 -
LLM基础概念:Prompt
prompt injection通常是通过在对话的起始或每个对话轮次插入特定的文本来实现的。这些文本可以是问题、指令、上下文信息或任务相关的提示,以引导模型生成与特定任务或目标相符合的回答。通过prompt injection,可以引导模型产生特定领域的回答,提供特定的信息或执行特定的操作。例如,在问答任务中,可以在prompt中提供问题和相关上下文,以引导模型生成相关的答案。在任务导向的对话中,可以在每个对话轮次重注入指令或任务目标,以引导模型按照特定的任务要求进行回答。原创 2024-09-25 09:42:27 · 777 阅读 · 0 评论 -
Prompt是什么
如果生成Python代码,可能会使用import来指示模型开始编写Python代码(因为Python脚本经常以import来开始)Context(external info):作为模型的额外知识来源,可以手动插入到提示中,或者通过向量数据库(检索增强),或者通过其他方式(如API、计算等)引入。Instructiions:指示模型应该做什么,如何使用提供的外部信息,如何处理查询,以及如何构造输出。User Input or Query:通常是由人类用户(提示词)输入到系统中的查询。原创 2024-09-04 19:16:44 · 142 阅读 · 0 评论 -
RAG(retrieval-augmented-generation)简介
检索增强生成(RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。原创 2024-09-04 09:42:31 · 925 阅读 · 0 评论