电信风控项目知识点复盘

1、groupby之后的max和first
2、关于排序:

方法一:根据start_time排序
df_sms.groupby('uid', group_keys=False).apply(lambda x: x.sort_values('start_time')).groupby(
        'uid').first().reset_index()[['uid', 'day']]
方法二:根据day排序
df_sms.groupby('uid', group_keys=False).apply(lambda x: x.sort_values('day')).groupby(
        'uid').first().reset_index()[['uid', 'day']]

如果时间周期为2021/11/3 22:33:03(day为3)— 2021/12/16 18:29:32(day为16),如果按照day排序,最小的是1(12月1日),最大的30(11月30日),此时取不到时间区间的两端。
3、关于时间的处理

当得到的时间已经转成pd.to_datetime后,若要做两列时间的差值:
(density['end_time'] - density['start_time']).astype('timedelta64[D]')
'timedelta64[D]' 转换为天
'timedelta64[h]' 转换为小时

4、复合索引取值
在这里插入图片描述
5、nunpy:hstack

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值