代码随想录刷题day22 | 235. 二叉搜索树的最近公共祖先、701. 二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

235. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例
在这里插入图片描述
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
注意:所有节点的值都是唯一的,p、q 为不同节点且均存在于给定的二叉搜索树中。

思路
本题是求二叉搜索树的最近公共祖先,要充分利用二叉搜索树的特性——有序
如果中间节点是公共祖先,则中间节点的值一定在[p,q]区间内,那它是最近公共祖先吗?
是的!
当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。
如果节点值大于p和q,就到左子树里面去找;
如果节点值小于p和q,就到右子树里面去找;
否则,就直接返回节点。

递归法

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root->val > p->val && root->val > q->val)
            return lowestCommonAncestor(root->left, p, q);
        else if(root->val < p->val && root->val < q->val)
            return lowestCommonAncestor(root->right, p, q);
        else
            return root;
    }
};

迭代法

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        while(root){
            if(root->val > p->val && root->val > q->val)
                root = root->left;
            else if(root->val < p->val && root->val < q->val)
                root = root->right;
            else
                return root;
        }
        return NULL;
    }
};

701.二叉搜索树中的插入操作

给定二叉搜索树的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。

示例 :
输入:root = [4,2,7,1,3], val = 5
在这里插入图片描述

输出:[4,2,7,1,3,5] (两棵树都可以)
在这里插入图片描述 在这里插入图片描述

思路
不用重构二叉树
因为二叉搜索树是有方向的,当遍历的节点为null的时候,就是要插入节点的位置了,把插入的节点返回即可。

class Solution {
public:
    TreeNode* insertIntoBST(TreeNode* root, int val) {
        if(root == nullptr){
            TreeNode* node = new TreeNode(val);
            return node;
        }
        if(root->val > val) root->left = insertIntoBST(root->left, val);
        if(root->val < val) root->right = insertIntoBST(root->right, val);
        return root;
    }
};

450.删除二叉搜索树中的节点

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

  1. 首先找到需要删除的节点;
  2. 如果找到了,删除它。

示例 :
在这里插入图片描述

或者下面这样:

在这里插入图片描述
思路
二叉搜索树中删除节点有以下五种情况:

第一种情况:没找到删除的节点,遍历到空节点直接返回了
找到删除的节点
第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
   		//确定终止条件
        if(root == nullptr) return root;//第一种情况
        if(root->val == key){
            if(root->left == nullptr) return root->right;//第二、三种情况
            else if(root->right == nullptr) return root->left;//第四种情况
            else{//第五种情况
                TreeNode* cur = root->right;
                while(cur->left) cur = cur->left;
                cur->left = root->left;
                return root->right;
            }
        }
		//单层递归逻辑
        if(root->val > key) root->left = deleteNode(root->left, key);
        else if(root->val < key) root->right = deleteNode(root->right, key);
        return root;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值