代码随想录刷题day22
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
注意:所有节点的值都是唯一的,p、q 为不同节点且均存在于给定的二叉搜索树中。
思路:
本题是求二叉搜索树的最近公共祖先,要充分利用二叉搜索树的特性——有序
如果中间节点是公共祖先,则中间节点的值一定在[p,q]区间内,那它是最近公共祖先吗?
是的!
当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。
如果节点值大于p和q,就到左子树里面去找;
如果节点值小于p和q,就到右子树里面去找;
否则,就直接返回节点。
递归法
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root->val > p->val && root->val > q->val)
return lowestCommonAncestor(root->left, p, q);
else if(root->val < p->val && root->val < q->val)
return lowestCommonAncestor(root->right, p, q);
else
return root;
}
};
迭代法
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while(root){
if(root->val > p->val && root->val > q->val)
root = root->left;
else if(root->val < p->val && root->val < q->val)
root = root->right;
else
return root;
}
return NULL;
}
};
701.二叉搜索树中的插入操作
给定二叉搜索树的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。
示例 :
输入:root = [4,2,7,1,3], val = 5
输出:[4,2,7,1,3,5] (两棵树都可以)
思路:
不用重构二叉树
因为二叉搜索树是有方向的,当遍历的节点为null的时候,就是要插入节点的位置了,把插入的节点返回即可。
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if(root == nullptr){
TreeNode* node = new TreeNode(val);
return node;
}
if(root->val > val) root->left = insertIntoBST(root->left, val);
if(root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
450.删除二叉搜索树中的节点
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
- 首先找到需要删除的节点;
- 如果找到了,删除它。
示例 :
或者下面这样:
思路:
二叉搜索树中删除节点有以下五种情况:
第一种情况:没找到删除的节点,遍历到空节点直接返回了
找到删除的节点
第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
//确定终止条件
if(root == nullptr) return root;//第一种情况
if(root->val == key){
if(root->left == nullptr) return root->right;//第二、三种情况
else if(root->right == nullptr) return root->left;//第四种情况
else{//第五种情况
TreeNode* cur = root->right;
while(cur->left) cur = cur->left;
cur->left = root->left;
return root->right;
}
}
//单层递归逻辑
if(root->val > key) root->left = deleteNode(root->left, key);
else if(root->val < key) root->right = deleteNode(root->right, key);
return root;
}
};