对于复数,angle()是求相位角,取值范围是-pi到pi;
abs()对于实数是求绝对值,对于复数是求其模值,X为一复数,abs(X)=sqrt(real(X).^2 + imag(X).^2);
另有:Z为一个复数时,R=abs(Z),theta=angle(Z),之后利用Z=R.*exp(i*theta)可以将Z复原.
本文深入解析复数的相位角和模值计算方法,通过angle()函数获取复数的相位角,范围从-pi到pi;abs()函数用于求复数的模值,即sqrt(real(X).^2+imag(X).^2)。并通过实例展示如何利用这些计算结果还原复数。
对于复数,angle()是求相位角,取值范围是-pi到pi;
abs()对于实数是求绝对值,对于复数是求其模值,X为一复数,abs(X)=sqrt(real(X).^2 + imag(X).^2);
另有:Z为一个复数时,R=abs(Z),theta=angle(Z),之后利用Z=R.*exp(i*theta)可以将Z复原.
您可能感兴趣的与本文相关的镜像
Anything-LLM
AnythingLLM是一个全栈应用程序,可以使用商用或开源的LLM/嵌入器/语义向量数据库模型,帮助用户在本地或云端搭建个性化的聊天机器人系统,且无需复杂设置
1110