mnist手写体识别(卷积神经网络)

# -*- coding: utf-8 -*-
"""
通过卷积神经网络进行预测

@author: Elijah
"""

#引入数据集
from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

#数据不存在时,自动下载
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

#x为训练图像的占位符,y为训练图像标签的占位符
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

#将单张图片还原为28*28的矩阵图片
x_image = tf.reshape(x, [-1, 28, 28, 1])

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1],padding='SAME')

#第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#两层卷积层之间的全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#将h_fc1_drop转换为10个类别的打分
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

#计算交叉熵
cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#定义测试的准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#创建session,对对象进行初始化
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

#训练20000步
for i in range(20000):
    batch = mnist.train.next_batch(50)
#    每100步验证一次准确率
    if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
                x:batch[0], y_:batch[1], keep_prob:1.0})
        print("step %d, training accuracy %g" % (i, train_accuracy))
    train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})
    
#在测试集上的准确率
print("test accuracy &g" % accuracy.eval(feed_dict={
        x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

 

展开阅读全文

没有更多推荐了,返回首页