卷积神经网络实现Mnist手写字体识别(唐宇迪神经网络课程笔记)

1.读取数据和理解数据

1)库调用声明和参数设置

import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import tensorflow as tf

#设置学习率
LEARNING_RATE = 1e-4
#进行2500次迭代
TRAINING_ITERATIONS = 2500        
#设置dropout保留率为50%
DROPOUT = 0.5
#每一个batch训练50张图片
BATCH_SIZE = 50

#使用2000张图片来进行测试
VALIDATION_SIZE = 2000

#图像最终输出为10个分类
IMAGE_TO_DISPLAY = 10

2)读取数据

# read training data from CSV file 
data = pd.read_csv('train.csv')

print('data({0[0]},{0[1]})'.format(data.shape))
print (data.head())

显示结果如下。可以看出训练数据由42000个样本组成,每个样本包含一个label值和784个特征值。我们知道mnist数据集是28*28的图片,784就是这28*28个像素值。

data(42000,785)
   label  pixel0  pixel1  pixel2  pixel3  pixel4  pixel5  pixel6  pixel7  \
0      1       0       0       0       0       0       0       0       0   
1      0       0       0       0       0       0       0       0       0   
2      1       0       0       0       0       0       0       0       0   
3      4       0       0       0       0       0       0       0       0   
4      0       0       0       0       0       0       0       0       0   

   pixel8    ...     pixel774  pixel775  pixel776  pixel777  pixel778  \
0       0    ...            0         0         0         0         0   
1       0    ...            0         0         0         0         0   
2       0    ...            0         0         0         0         0   
3       0    ...            0         0         0         0         0   
4       0    ...            0         0         0         0         0   

   pixel779  pixel780  pixel781  pixel782  pixel783  
0         0         0         0         0         0  
1         0         0         0         0         0  
2         0         0         0         0         0  
3         0         0         0         0         0  
4         0         0         0         0         0  

[5 rows x 785 columns]

3)获取特征数据,并对特征数据进行归一化处理

#选取除标签外所有的数据
images = data.iloc[:,1:].values
#数值转换
images = images.astype(np.float)

# 像素值为0-255之间的值,转换为0-1之间的值 [0:255] => [0.0:1.0]
images = np.multiply(images, 1.0 / 255.0)

image_size = images.shape[1]

# in this case all images are square
#根据训练数据获取图像的宽和高
image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)

4)对转换后的图片进行展示

def display(img):
    # (784) => (28,28)
    one_image = img.reshape(image_width,image_height)
    
    plt.axis('off')
    plt.imshow(one_image, cmap=cm.binary)

# output image     
display(images[IMAGE_TO_DISPLAY])

训练数据中的一张图片展示如下:

2.对数据进行处理转换

1)计算所有的标签类别

#从原始数据中取出所有的标签值
labels_flat = data.iloc[:,0].values.ravel()
#获取标签类别数
labels_count = np.unique(labels_flat).shape[0]

print('labels_count => {0}'.format(labels_count))

计算结果为:
labels_count => 10

2)对标签值进行one_hot类别转换

# convert class labels from scalars to one-hot vectors
# 0 => [1 0 0 0 0 0 0 0 0 0]
# 1 => [0 1 0 0 0 0 0 0 0 0]
# ...
# 9 => [0 0 0 0 0 0 0 0 0 1]
def dense_to_one_hot(labels_dense, num_classes):
    num_labels = labels_dense.shape[0]
    index_offset = np.arange(num_labels) * num_classes
    labels_one_hot = np.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot

labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)

3)分离出训练数据和测试数据

#取前VALIDATION_SIZE个样本为测试数据,其余为训练数据
validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]

train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]

3.卷积过程用到的函数定义

1)权重(weight)和偏置(bias)初始化

# weight initialization
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
# bias initialization
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

2)卷积和池化函数定义

   tf.nn.conv2d参数解释

    x:输入图像数据
    W:filter
    strides:tf在4维图像上进行计算,strides第一个参数表示在batchsize上的滑动,一般指定为1就可以,后边三个参数依次为宽、高、颜色通道上的滑动,一般只修改中间两个值,也就是在宽高上的滑动
    strides的第四个参数1表示通道上的滑动

  padding:取值为SAME表示周围用0进行填充,取值为VALID表示不进行填充

tf.nn.max_pool(value,kszie,strides,padding,name=None)参数解释
value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
padding:和卷积类似,可以取'VALID' 或者'SAME'

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# pooling
# [[0,3],
#  [4,2]] => 4

# [[0,1],
#  [1,1]] => 1
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

4.卷积神经网络各层计算

 1)第一个卷积、Relu和池化层计算

# input and output
x = tf.placeholder('float', shape=[None, image_size])
y_ = tf.placeholder('float', shape=[None, labels_count])

#第一个卷积层计算
#宽5 高5 channel为1 用多少个filter来计算,这里是32
W_conv1 = weight_variable([5, 5, 1, 32])
#执行卷积后得到了32个图,所以需要32个偏置
b_conv1 = bias_variable([32])

# (40000,784) => (40000,28,28,1)
image = tf.reshape(x, [-1,image_width , image_height,1])
#print (image.get_shape()) # =>(40000,28,28,1)

h_conv1 = tf.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
#print (h_pool1.get_shape()) # => (40000, 14, 14, 32)

 2)第二个卷积、Relu和池化层计算

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
#print (h_pool2.get_shape()) # => (40000, 7, 7, 64)

 3)全连接层计算

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

# (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#print (h_fc1.get_shape()) # => (40000, 1024)

 4)dropout处理

keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

 5)损失值计算并进行预测

W_fc2 = weight_variable([1024, labels_count])
b_fc2 = bias_variable([labels_count])

y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#print (y.get_shape()) # => (40000, 10)

# cost function
cross_entropy = -tf.reduce_sum(y_*tf.log(y))


# optimisation function
train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy)

# evaluation
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

# prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
predict = tf.argmax(y,1)

5.分批次进行训练和测试

epochs_completed = 0
index_in_epoch = 0
num_examples = train_images.shape[0]

# serve data by batches
def next_batch(batch_size):
    
    global train_images
    global train_labels
    global index_in_epoch
    global epochs_completed
    
    start = index_in_epoch
    index_in_epoch += batch_size
    
    # when all trainig data have been already used, it is reorder randomly    
    if index_in_epoch > num_examples:
        # finished epoch
        epochs_completed += 1
        # shuffle the data
        perm = np.arange(num_examples)
        np.random.shuffle(perm)
        train_images = train_images[perm]
        train_labels = train_labels[perm]
        # start next epoch
        start = 0
        index_in_epoch = batch_size
        assert batch_size <= num_examples
    end = index_in_epoch
    return train_images[start:end], train_labels[start:end]

# start TensorFlow session
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()

sess.run(init)

# visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = []

display_step=1

for i in range(TRAINING_ITERATIONS):

    #get new batch
    batch_xs, batch_ys = next_batch(BATCH_SIZE)

    # check progress on every 1st,2nd,...,10th,20th,...,100th... step
    if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS:
        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
        if(VALIDATION_SIZE):
            validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE], 
                                                            y_: validation_labels[0:BATCH_SIZE], 
                                                            keep_prob: 1.0})                                  
            print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i))
            
            validation_accuracies.append(validation_accuracy)
            
        else:
             print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
        train_accuracies.append(train_accuracy)
        x_range.append(i)
        
        # increase display_step
        if i%(display_step*10) == 0 and i:
            display_step *= 10
    # train on batch
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT})

6.运行结果

training_accuracy / validation_accuracy => 0.24 / 0.14 for step 0
training_accuracy / validation_accuracy => 0.06 / 0.06 for step 1
training_accuracy / validation_accuracy => 0.20 / 0.32 for step 2
training_accuracy / validation_accuracy => 0.16 / 0.26 for step 3
training_accuracy / validation_accuracy => 0.24 / 0.26 for step 4
training_accuracy / validation_accuracy => 0.20 / 0.30 for step 5
training_accuracy / validation_accuracy => 0.36 / 0.40 for step 6
training_accuracy / validation_accuracy => 0.46 / 0.32 for step 7
training_accuracy / validation_accuracy => 0.28 / 0.40 for step 8
training_accuracy / validation_accuracy => 0.34 / 0.28 for step 9
training_accuracy / validation_accuracy => 0.34 / 0.46 for step 10
training_accuracy / validation_accuracy => 0.44 / 0.56 for step 20
training_accuracy / validation_accuracy => 0.60 / 0.66 for step 30
training_accuracy / validation_accuracy => 0.68 / 0.68 for step 40
training_accuracy / validation_accuracy => 0.74 / 0.82 for step 50
training_accuracy / validation_accuracy => 0.76 / 0.70 for step 60
training_accuracy / validation_accuracy => 0.82 / 0.80 for step 70
training_accuracy / validation_accuracy => 0.76 / 0.82 for step 80
training_accuracy / validation_accuracy => 0.86 / 0.84 for step 90
training_accuracy / validation_accuracy => 0.80 / 0.84 for step 100
training_accuracy / validation_accuracy => 0.96 / 0.90 for step 200
training_accuracy / validation_accuracy => 0.92 / 0.88 for step 300
training_accuracy / validation_accuracy => 0.88 / 0.88 for step 400
training_accuracy / validation_accuracy => 0.96 / 0.90 for step 500
training_accuracy / validation_accuracy => 0.92 / 0.90 for step 600
training_accuracy / validation_accuracy => 0.90 / 0.90 for step 700
training_accuracy / validation_accuracy => 0.94 / 0.90 for step 800
training_accuracy / validation_accuracy => 0.94 / 0.90 for step 900
training_accuracy / validation_accuracy => 0.94 / 0.92 for step 1000
training_accuracy / validation_accuracy => 0.94 / 0.94 for step 2000
training_accuracy / validation_accuracy => 0.98 / 0.94 for step 2499

从以上运行结果可以看出,迭代2500次后训练准确率已经达到98%,测试准确率也在94%了。

github代码路径:https://github.com/zhuwsh/mnist-master

  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值