高等数学:微分方程(彻底搞懂)

本文是一些学习笔记,如有遗漏,多多包涵。
想要理解微分方程中的特殊概念,比如齐次、线性,重点在于抓住一个词:未知函数

一阶微分方程

是关于 x , y , y ′ x,y,y' x,y,y 的方程。通式:

  • y ′ = f ( x , y ) y'=f(x,y) y=f(x,y) ① 导数写法
  • P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0 ② 微分写法

可分离变量型

如果一阶微分方程能写成 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y=f(ax+by+c) 的形式,那么原方程就称为可分离变量的微分方程

解法:分离变量法,将“解微分方程”转化为“求不定积分”

  1. 两端积分: ∫ g ( y ) d y = ∫ f ( x ) d x \int g(y)dy = \int f(x)dx g(y)dy=f(x)dx

  2. 添加常数 C C C G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C

齐次方程

如果一阶微分方程可化成 d y d x = φ ( y x ) \frac{dy}{dx}=\varphi (\frac{y}{x}) dxdy=φ(xy) ,就称这个方程为齐次方程

这里的“齐次”指的是方程中的每一项关于 x , y x,y x,y 的次数是相等的。例如:

  • y ′ + y x + 1 = 0 y'+\frac{y}{x}+1=0 y+xy+1=0 每一项都是 0 次
  • ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0 (xy-y^2)dx-(x^2-2xy)dy=0 (xyy2)dx(x22xy)dy=0,都是关于 x x x y y y 的 2 次

解法:变量代换 + 分离变量法

  1. 引入新未知函数: u = y x u=\frac{y}{x} u=xy
  2. 化作关于 u , x u,x u,x可分离变量的微分方程 d y d x = u + x d u d x = φ ( u ) \frac{dy}{dx}=u+x\frac{du}{dx}=\varphi(u) dxdy=u+xdxdu=φ(u),即 d u φ ( u ) − u = d x x \frac{du}{\varphi(u)-u}=\frac{dx}{x} φ(u)udu=xdx
  3. 解出积分后,再将 u = y x u=\frac{y}{x} u=xy 代入。

y x \frac{y}{x} xy 看作自变量,则方程不含独立的 x x x,所有项都只和未知函数 u u u 相关。

一阶线性微分方程

通式: y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)

P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 是关于 x x x 的已知函数, y y y 是未知函数。

这里的“线性”指:方程是未知函数 y y y 及其导数 y ′ y' y 的线性组合。

所谓“线性组合”,指的是元素的加权求和。这里的加权系数 x x x 的函数,而不能是 y y y 的函数

一阶齐次线性微分方程

通式: y ′ + P ( x ) y = 0 y'+P(x)y=0 y+P(x)y=0

这里的“齐次”,是指:① 方程中关于未知函数及其导数的项的次数相同(都是一次);② 方程中所有项都包含未知函数 y y y 或其导数 y ( n ) y^{(n)} y(n),换句话说,就是不含独立于未知函数的项。
Q ( x ) ≡ 0 Q(x)\equiv 0 Q(x)0 .

什么是“独立于未知函数的项”?
例如 y ′ + 3 x y = 5 x 2 y'+3xy=5x^2 y+3xy=5x2 中的 5 x 2 5x^2 5x2 不包含 y , y ′ y,y' y,y ,就是独立于未知函数的自由项。

解法:分离变量法

  1. 化作可分离变量的形式: d y y = − P ( x ) d x \frac{dy}{y}=-P(x)dx ydy=P(x)dx
  2. 求解,得通解: l n ∣ y ∣ = − ∫ P ( x ) d x + C 1 ln|y|=-\int P(x)dx+C_1 lny=P(x)dx+C1
    • y = e − ∫ P ( x ) d x + C 1 = C e − ∫ P ( x ) d x , ( C = ± e C 1 ) y=e^{-\int P(x)dx+C_1}=Ce^{-\int P(x)dx},(C=\pm e^{C1}) y=eP(x)dx+C1=CeP(x)dx,(C=±eC1)

一阶非齐次线性微分方程

通式: y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)

解法:用公式 y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ⋅ ∫ Q ( x ) e ∫ P ( x ) d x d x y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}·\int Q(x)e^{\int P(x)dx}dx y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx

推导过程:常数变易法——将齐次线性微分方程通解 y = C e − ∫ P ( x ) d x y=Ce^{-\int P(x)dx} y=CeP(x)dx 中的 C C C 换成 x x x 的未知函数 u ( x ) u(x) u(x)

  1. y = u e − ∫ P ( x ) d x y=ue^{-\int P(x)dx} y=ueP(x)dx

  2. y = u ′ e − ∫ P ( x ) d x − u e − ∫ P ( x ) d x P ( x ) y=u'e^{-\int P(x)dx}-ue^{-\int P(x)dx}P{(x)} y=ueP(x)dxueP(x)dxP(x)

  3. 代入 y y y y ′ y' y 的方程到 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x) 中得 u ′ = Q ( x ) e ∫ P ( x ) d x u'=Q(x)e^{\int P(x)dx} u=Q(x)eP(x)dx

  4. u = ∫ Q ( x ) e ∫ P ( x ) d x d x + C u=\int Q(x)e^{\int P(x)dx}dx + C u=Q(x)eP(x)dxdx+C

  5. 代入上式到齐次线性微分方程通解,得非齐次线性微分方程的通解: y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ⋅ ∫ Q ( x ) e ∫ P ( x ) d x d x y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}·\int Q(x)e^{\int P(x)dx}dx y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx

该式子,左边第一项是齐次微分方程的通解,右边第二项是非齐次微分方程的特解。
由此可知:一阶非齐次线性微分方程的通解 = 对应齐次微分方程的通解 + 非齐次微分方程的一个特解

二阶微分方程

二阶变系数线性微分方程

通式: y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y''+p(x)y'+q(x)y=f(x) y′′+p(x)y+q(x)y=f(x)

p ( x ) p(x) p(x) q ( x ) q(x) q(x) 叫做系数函数 f ( x ) f(x) f(x) 叫做自由项,均为已知的连续函数。

  • 齐次线性方程: y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y''+p(x)y'+q(x)y=0 y′′+p(x)y+q(x)y=0
  • 非齐次线性方程: y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y''+p(x)y'+q(x)y=f(x) y′′+p(x)y+q(x)y=f(x)

有关齐次线性方程的性质

y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x) 是齐次线性方程的两个解,且 y 1 ( x ) y 2 ( x ) ≠ C \frac {y_1(x)}{y_2(x)}\ne C y2(x)y1(x)=C (常数),则称 y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x) 是该方程的两个线性无关的解

  • Y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) Y(x)=C_1y_1(x)+C_2y_2(x) Y(x)=C1y1(x)+C2y2(x) 是齐次线性方程的通解
  • y 1 ( x ) , y 2 ( x ) , ⋅ ⋅ ⋅ y m ( x ) y_1(x),y_2(x),···y_m(x) y1(x),y2(x),⋅⋅⋅ym(x) 是齐次线性方程的 m m m 个解,则它们的线性组合也是齐次线性方程的 y = ∑ i = 1 m C i y i y=\sum_{i=1}^{m}C_iy_i y=i=1mCiyi C i C_i Ci 是常数
  • y 1 ( x ) , y 2 ( x ) , ⋅ ⋅ ⋅ y n ( x ) y_1(x),y_2(x),···y_n(x) y1(x),y2(x),⋅⋅⋅yn(x) 是齐次线性方程的 n n n线性无关的解,则它们的线性组合也是齐次线性方程的通解 y = ∑ i = 1 n C i y i y=\sum_{i=1}^{n}C_iy_i y=i=1nCiyi C i C_i Ci 是常数
  • y 1 ∗ ( x ) , y 2 ∗ ( x ) y_1^*(x),y_2^*(x) y1(x),y2(x)非齐次线性方程的两个解,则 y 1 ∗ ( x ) − y 2 ∗ ( x ) y_1^*(x)-y_2^*(x) y1(x)y2(x) 是齐次线性方程的

有关非齐次线性方程的性质

  • y ∗ ( x ) y^*(x) y(x) 是非齐次线性方程的一个特解,则 Y ( x ) + y ∗ ( x ) Y(x)+y^*(x) Y(x)+y(x) 是非齐次线性方程的通解
  • y 1 ∗ ( x ) , y 2 ∗ ( x ) y_1^*(x),y_2^*(x) y1(x),y2(x) 是非齐次线性方程对应自由项为 f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x) 的两个解,则 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_1^*(x)+y_2^*(x) y1(x)+y2(x) 是自由项为 f ( x ) = f 1 ( x ) + f 2 ( x ) f(x)=f_1(x)+f_2(x) f(x)=f1(x)+f2(x) 的非齐次线性方程的

二阶常系数线性微分方程

通式: y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x)

p p p q q q 都是常数, f ( x ) f(x) f(x) 是自由项。

  • 二阶常系数线性齐次方程: y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0
  • 二阶常系数线性非齐次方程: y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x)

解的结构

未完待续

  • 12
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值