自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 算法原理-Yolo v2

相比于YOLO v1,YOLO v2的改进如下:1)batch normalization(批归一化)2)使用高分辨率图像微调分类模型YOLO v1使用ImageNet的图像分类样本采用 224*224 作为输入,来训练CNN卷积层。然后在训练对象检测时,检测用的图像样本采用更高分辨率的 448*448 的图像作为输入。但这样切换对模型性能有一定影响。YOLO2在采用 224*224 图像进行分类模型预训练后,再采用 448*448 的高分辨率样本对分类模型进行微调(10个epoch),使网

2021-07-30 23:24:14 697 1

原创 算法工程-kafka架构理解

1.Kafka概述1.1定义Kafka是一个分布式的给予发布/订阅模式的消息队列。Kafka能够以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。具有高吞吐率,即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。同时支持离线数据处理和实时数据处理。1.2 kafka消息队列特性1.2.1特点解耦允许独立扩展...

2021-07-30 23:21:26 249

原创 算法工程-Faiss原理和使用总结

1.Faiss的概念faiss是一个Facebook AI团队开源的库,全称为Facebook AI Similarity Search,该开源库针对高维空间中的海量数据(稠密向量),提供了高效且可靠的相似性聚类和检索方法,可支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。官方资源地址https://github.com/facebookresearch/faiss2.Faiss基础依赖1)矩阵计算框架:Faiss与计算资源之间需要一个外部依赖框架,这个框架是一个矩阵计算框架,官方默

2021-07-26 22:30:50 24469 1

原创 算法原理-YOLO v1

一、Yolo v1介绍如R-CNN,Fast-R-CNN,Faster-R-CNN等方法主要是通过region proposal产生大量的可能包含待检测物体的 potential bounding box,再用分类器去判断每个 bounding box里是否包含有物体,以及物体所属类别的 probability或者 confidence,。YOLO不同于这些物体检测方法,它将物体检测任务当做一个regression问题来处理,使用一个神经网络,直接从一整张图像来预测出bounding box 的坐标

2021-06-18 20:00:32 223

原创 算法原理-RCNN与Fast RCNN与Faster RCNN

一、RCNNR-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归。1,得到若干候选区域(Selective Search得到的候选区域)2, 将每个候选区域缩放到一个固定的大小, 对每个候选区域分别用CNN分类;3,对每个候选区域分别进行边框预测;slelective Search得到的候选区域并不一定和目标物体的真实边界相吻合,因此R-CNN提出对物体的边界框做进一步的调

2021-06-18 19:43:35 378

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除